Nuprl Lemma : test-recursion-extract

k:ℕ. ∀f:ℕ ⟶ ℚ.  ((∃n:ℕk. ((f n) 0 ∈ ℚ)) ∨ True)


Proof




Definitions occuring in Statement :  rationals: int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] or: P ∨ Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nat: or: P ∨ Q exists: x:A. B[x] int_seg: {i..j-} subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] squash: T decidable: Dec(P) sq_type: SQType(T) guard: {T} true: True ge: i ≥  lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  nequal: a ≠ b ∈  int_upper: {i...} bfalse: ff bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  int_seg_wf rationals_wf int_seg_subtype_nat istype-false true_wf istype-nat natrec_wf all_wf nat_wf or_wf exists_wf equal-wf-T-base subtype_rel_function subtype_rel_self function-valueall-type rationals-value-type evalall-reduce set-value-type equal_wf valueall-type-value-type decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties nat_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf decidable__equal_rationals subtract_wf decidable__le intformnot_wf itermSubtract_wf intformeq_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma le_wf int-subtype-rationals decidable__lt less_than_wf lt_int_wf eqtt_to_assert assert_of_lt_int upper_subtype_nat nequal-le-implies zero-add eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf qexp_wf bnot_wf not_wf bool_cases iff_transitivity assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin sqequalRule functionIsType universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality setElimination rename hypothesisEquality hypothesis inhabitedIsType unionIsType productIsType equalityIsType3 applyEquality independent_isectElimination independent_pairFormation baseClosed lambdaEquality_alt functionEquality because_Cache functionExtensionality dependent_functionElimination imageMemberEquality equalityTransitivity equalitySymmetry cutEval dependent_set_memberEquality_alt equalityIsType1 hyp_replacement applyLambdaEquality unionElimination instantiate cumulativity intEquality independent_functionElimination inrFormation_alt productElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination inlFormation_alt equalityElimination hypothesis_subsumption equalityIsType2 baseApply closedConclusion promote_hyp

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}.    ((\mexists{}n:\mBbbN{}k.  ((f  n)  =  0))  \mvee{}  True)



Date html generated: 2019_10_16-PM-00_34_09
Last ObjectModification: 2018_10_10-AM-11_04_51

Theory : rationals


Home Index