Nuprl Lemma : test-recursion-extract
∀k:ℕ. ∀f:ℕ ⟶ ℚ.  ((∃n:ℕk. ((f n) = 0 ∈ ℚ)) ∨ True)
Proof
Definitions occuring in Statement : 
rationals: ℚ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
true: True
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
squash: ↓T
, 
decidable: Dec(P)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
true: True
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
nequal: a ≠ b ∈ T 
, 
int_upper: {i...}
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
int_seg_wf, 
rationals_wf, 
int_seg_subtype_nat, 
istype-false, 
true_wf, 
istype-nat, 
natrec_wf, 
all_wf, 
nat_wf, 
or_wf, 
exists_wf, 
equal-wf-T-base, 
subtype_rel_function, 
subtype_rel_self, 
function-valueall-type, 
rationals-value-type, 
evalall-reduce, 
set-value-type, 
equal_wf, 
valueall-type-value-type, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
decidable__equal_rationals, 
subtract_wf, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
le_wf, 
int-subtype-rationals, 
decidable__lt, 
less_than_wf, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
upper_subtype_nat, 
nequal-le-implies, 
zero-add, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
qexp_wf, 
bnot_wf, 
not_wf, 
bool_cases, 
iff_transitivity, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
sqequalRule, 
functionIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
unionIsType, 
productIsType, 
equalityIsType3, 
applyEquality, 
independent_isectElimination, 
independent_pairFormation, 
baseClosed, 
lambdaEquality_alt, 
functionEquality, 
because_Cache, 
functionExtensionality, 
dependent_functionElimination, 
imageMemberEquality, 
equalityTransitivity, 
equalitySymmetry, 
cutEval, 
dependent_set_memberEquality_alt, 
equalityIsType1, 
hyp_replacement, 
applyLambdaEquality, 
unionElimination, 
instantiate, 
cumulativity, 
intEquality, 
independent_functionElimination, 
inrFormation_alt, 
productElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
inlFormation_alt, 
equalityElimination, 
hypothesis_subsumption, 
equalityIsType2, 
baseApply, 
closedConclusion, 
promote_hyp
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}.    ((\mexists{}n:\mBbbN{}k.  ((f  n)  =  0))  \mvee{}  True)
Date html generated:
2019_10_16-PM-00_34_09
Last ObjectModification:
2018_10_10-AM-11_04_51
Theory : rationals
Home
Index