Nuprl Lemma : mk_lambdas-fun-shift-init
∀[F,K:Top]. ∀[n,m,p,q:ℕ].
  (mk_lambdas-fun(F;λf.mk_applies(f;K;p + q);n;m) 
  ~ mk_lambdas-fun(λg.(F (λf.(g mk_applies(f;K;p))));λf.mk_applies(f;λi.(K (p + i));q);n;m))
Proof
Definitions occuring in Statement : 
mk_applies: mk_applies(F;G;m)
, 
mk_lambdas-fun: mk_lambdas-fun(F;G;n;m)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
lambda: λx.A[x]
, 
add: n + m
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
guard: {T}
, 
mk_lambdas-fun: mk_lambdas-fun(F;G;n;m)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
true: True
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
decidable__le, 
subtract_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
decidable__equal_int, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
equal_wf, 
subtype_base_sq, 
int_subtype_base, 
intformless_wf, 
int_formula_prop_less_lemma, 
ge_wf, 
less_than_wf, 
nat_wf, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
mk_applies_split, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
top_wf, 
mk_applies_unroll, 
decidable__lt, 
eq_int_wf, 
mk_applies_fun, 
lelt_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
bool_cases, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
add-subtract-cancel, 
mk_applies_fun2, 
neg_assert_of_eq_int
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
isectElimination, 
because_Cache, 
natural_numberEquality, 
independent_isectElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
addEquality, 
productElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
intWeakElimination, 
lambdaFormation, 
sqequalAxiom, 
equalityElimination, 
promote_hyp, 
isect_memberFormation, 
impliesFunctionality, 
applyEquality, 
minusEquality
Latex:
\mforall{}[F,K:Top].  \mforall{}[n,m,p,q:\mBbbN{}].
    (mk\_lambdas-fun(F;\mlambda{}f.mk\_applies(f;K;p  +  q);n;m) 
    \msim{}  mk\_lambdas-fun(\mlambda{}g.(F  (\mlambda{}f.(g  mk\_applies(f;K;p))));\mlambda{}f.mk\_applies(f;\mlambda{}i.(K  (p  +  i));q);n;m))
Date html generated:
2017_10_01-AM-08_40_45
Last ObjectModification:
2017_07_26-PM-04_28_14
Theory : untyped!computation
Home
Index