Nuprl Lemma : p-unit-iff
∀p:{p:{2...}| prime(p)} . ∀a:p-adics(p).  (¬((a 1) = 0 ∈ ℤ) 
⇐⇒ ∃b:p-adics(p). (a * b = 1(p) ∈ p-adics(p)))
Proof
Definitions occuring in Statement : 
p-int: k(p)
, 
p-mul: x * y
, 
p-adics: p-adics(p)
, 
prime: prime(a)
, 
int_upper: {i...}
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
p-adics: p-adics(p)
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
le: A ≤ B
, 
false: False
, 
not: ¬A
, 
int_upper: {i...}
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
p-units: p-units(p)
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
subtract: n - m
, 
p-int: k(p)
, 
p-mul: x * y
, 
p-reduce: i mod(p^n)
, 
sq_type: SQType(T)
, 
lelt: i ≤ j < k
Lemmas referenced : 
not_wf, 
equal-wf-T-base, 
less_than_wf, 
int_seg_wf, 
exp_wf2, 
false_wf, 
le_wf, 
exists_wf, 
p-adics_wf, 
equal_wf, 
p-mul_wf, 
decidable__lt, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
p-int_wf, 
set_wf, 
int_upper_wf, 
prime_wf, 
p-inv_wf, 
p-adic-property, 
nat_plus_properties, 
sq_stable_from_decidable, 
decidable__prime, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
and_wf, 
nat_plus_wf, 
all_wf, 
eqmod_wf, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add-associates, 
add-zero, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
exp-positive, 
exp1, 
zero-mul, 
intformand_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
lelt_wf, 
modulus_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
lambdaEquality, 
independent_functionElimination, 
voidElimination, 
because_Cache, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
addEquality, 
imageElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
functionExtensionality, 
addLevel, 
levelHypothesis, 
equalitySymmetry, 
equalityTransitivity, 
applyLambdaEquality, 
minusEquality, 
universeEquality, 
instantiate, 
cumulativity, 
promote_hyp
Latex:
\mforall{}p:\{p:\{2...\}|  prime(p)\}  .  \mforall{}a:p-adics(p).    (\mneg{}((a  1)  =  0)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}b:p-adics(p).  (a  *  b  =  1(p)))
Date html generated:
2018_05_21-PM-03_23_24
Last ObjectModification:
2018_05_19-AM-08_21_50
Theory : rings_1
Home
Index