Nuprl Lemma : p-unit-iff

p:{p:{2...}| prime(p)} . ∀a:p-adics(p).  ((a 1) 0 ∈ ℤ⇐⇒ ∃b:p-adics(p). (a 1(p) ∈ p-adics(p)))


Proof




Definitions occuring in Statement :  p-int: k(p) p-mul: y p-adics: p-adics(p) prime: prime(a) int_upper: {i...} all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A set: {x:A| B[x]}  apply: a natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] p-adics: p-adics(p) nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True subtype_rel: A ⊆B int_seg: {i..j-} nat: le: A ≤ B false: False not: ¬A int_upper: {i...} rev_implies:  Q so_lambda: λ2x.t[x] decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) uimplies: supposing a so_apply: x[s] exists: x:A. B[x] p-units: p-units(p) guard: {T} sq_stable: SqStable(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top subtract: m p-int: k(p) p-mul: y p-reduce: mod(p^n) sq_type: SQType(T) lelt: i ≤ j < k
Lemmas referenced :  not_wf equal-wf-T-base less_than_wf int_seg_wf exp_wf2 false_wf le_wf exists_wf p-adics_wf equal_wf p-mul_wf decidable__lt not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel p-int_wf set_wf int_upper_wf prime_wf p-inv_wf p-adic-property nat_plus_properties sq_stable_from_decidable decidable__prime int_upper_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf and_wf nat_plus_wf all_wf eqmod_wf less-iff-le condition-implies-le minus-add minus-one-mul minus-one-mul-top add-associates add-zero squash_wf true_wf subtype_rel_self iff_weakening_equal subtype_base_sq set_subtype_base int_subtype_base exp-positive exp1 zero-mul intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma lelt_wf modulus_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality applyEquality setElimination rename hypothesisEquality hypothesis dependent_set_memberEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed lambdaEquality independent_functionElimination voidElimination because_Cache productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation addEquality imageElimination approximateComputation int_eqEquality isect_memberEquality voidEquality functionExtensionality addLevel levelHypothesis equalitySymmetry equalityTransitivity applyLambdaEquality minusEquality universeEquality instantiate cumulativity promote_hyp

Latex:
\mforall{}p:\{p:\{2...\}|  prime(p)\}  .  \mforall{}a:p-adics(p).    (\mneg{}((a  1)  =  0)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}b:p-adics(p).  (a  *  b  =  1(p)))



Date html generated: 2018_05_21-PM-03_23_24
Last ObjectModification: 2018_05_19-AM-08_21_50

Theory : rings_1


Home Index