Nuprl Lemma : ranked-eo_wf

[Info:Type]. ∀[L:Id ─→ (Info List)]. ∀[rk:(i:Id × ℕ||L i||) ─→ ℕ].
  ranked-eo(L;rk) ∈ EO+(Info) supposing ∀i:Id. ∀j:ℕ||L i||. ∀k:ℕj.  rk <i, k> < rk <i, j>


Proof




Definitions occuring in Statement :  ranked-eo: ranked-eo(L;rk) event-ordering+: EO+(Info) Id: Id length: ||as|| list: List int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T apply: a function: x:A ─→ B[x] pair: <a, b> product: x:A × B[x] natural_number: $n universe: Type
Lemmas :  mk-extended-eo_wf btrue_wf less_than_wf int_seg_wf length_wf lt_int_wf subtract_wf zero-le-nat non_neg_length length_wf_nat le_wf lelt_wf select_wf int_seg_subtype-nat false_wf squash_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int not_squash less_than_transitivity2 le_weakening2 assert_of_lt_int assert_wf not_wf assert_witness all_wf Id_wf nat_wf list_wf less_than_irreflexivity decidable__le not-le-2 not-equal-2 sq_stable__le add_functionality_wrt_le zero-add add-zero le-add-cancel condition-implies-le minus-one-mul minus-add minus-minus add-associates add-swap add-commutes minus-zero decidable__lt less-iff-le le-add-cancel2 subtract-is-less atom2_subtype_base decidable__equal_int int_subtype_base true_wf iff_weakening_equal le_weakening less_than_transitivity1

Latex:
\mforall{}[Info:Type].  \mforall{}[L:Id  {}\mrightarrow{}  (Info  List)].  \mforall{}[rk:(i:Id  \mtimes{}  \mBbbN{}||L  i||)  {}\mrightarrow{}  \mBbbN{}].
    ranked-eo(L;rk)  \mmember{}  EO+(Info)  supposing  \mforall{}i:Id.  \mforall{}j:\mBbbN{}||L  i||.  \mforall{}k:\mBbbN{}j.    rk  <i,  k>  <  rk  <i,  j>



Date html generated: 2015_07_21-PM-04_42_02
Last ObjectModification: 2015_02_04-PM-05_58_22

Home Index