Nuprl Lemma : isl-es-search-back

es:EO. ∀[T:Type]. ∀e:E. ∀f:{e':E| e' ≤loc }  ─→ (T Top).  (↑isl(es-search-back(es;x.f[x];e)) ⇐⇒ ∃e'≤e.↑isl(f[e']))


Proof




Definitions occuring in Statement :  existse-le: e≤e'.P[e] es-search-back: es-search-back(es;x.f[x];e) es-le: e ≤loc e'  es-E: E event_ordering: EO assert: b isl: isl(x) uall: [x:A]. B[x] top: Top so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  function: x:A ─→ B[x] union: left right universe: Type
Lemmas :  es-causl-swellfnd less_than_transitivity1 less_than_irreflexivity int_seg_wf decidable__equal_int subtype_rel-int_seg false_wf le_weakening subtract_wf int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf es-search-back-cases es-le_wf subtype_rel_sum top_wf es-E_wf equal_wf all_wf int_seg_subtype-nat iff_wf assert_wf isl_wf es-search-back_wf exists_wf decidable__lt not-equal-2 condition-implies-le minus-add minus-minus minus-one-mul add-swap add-commutes add-associates add_functionality_wrt_le zero-add le-add-cancel-alt less-iff-le le-add-cancel set_wf less_than_wf primrec-wf2 decidable__le not-le-2 sq_stable__le add-zero add-mul-special zero-mul event_ordering_wf es-le-self and_wf btrue_wf subtype_base_sq bool_wf bool_subtype_base true_wf es-first_wf2 eqtt_to_assert eqff_to_assert bool_cases_sqequal assert-bnot assert-es-first es-causl_weakening bfalse_wf assert_elim btrue_neq_bfalse es-pred_wf es-pred-locl subtype_rel_dep_function subtype_rel_sets es-locl_transitivity1 es-le_weakening subtype_rel_self es-le-pred es-le_weakening_eq
\mforall{}es:EO
    \mforall{}[T:Type]
        \mforall{}e:E.  \mforall{}f:\{e':E|  e'  \mleq{}loc  e  \}    {}\mrightarrow{}  (T  +  Top).
            (\muparrow{}isl(es-search-back(es;x.f[x];e))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}e'\mleq{}e.\muparrow{}isl(f[e']))



Date html generated: 2015_07_17-AM-08_48_47
Last ObjectModification: 2015_01_27-PM-02_28_43

Home Index