Nuprl Lemma : assert-es-first
∀[es:EO]. ∀[e:E].  uiff(↑first(e);∀[e':E]. ¬(e' < e) supposing loc(e') = loc(e) ∈ Id)
Proof
Definitions occuring in Statement : 
es-first: first(e)
, 
es-causl: (e < e')
, 
es-loc: loc(e)
, 
es-E: E
, 
event_ordering: EO
, 
Id: Id
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
equal: s = t ∈ T
Lemmas : 
es-causl_wf, 
equal_wf, 
Id_wf, 
es-loc_wf, 
es-E_wf, 
assert_wf, 
es-first_wf, 
assert_witness, 
uall_wf, 
isect_wf, 
not_wf, 
event_ordering_wf, 
es-eq-E-wf-base, 
es-loc-wf-base, 
es-causl-wf-base, 
es-pred-wf-base, 
es-causl-swellfnd-base, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
bor_wf, 
bnot_wf, 
es-dom_wf, 
es-base-E_wf, 
int_seg_wf, 
int_seg_subtype-nat, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__equal_int, 
subtype_rel-int_seg, 
le_weakening, 
int_seg_properties, 
le_wf, 
nat_wf, 
zero-le-nat, 
lelt_wf, 
decidable__lt, 
not-equal-2, 
le-add-cancel-alt, 
not-le-2, 
sq_stable__le, 
add-mul-special, 
zero-mul, 
es-base-pred_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
or_wf, 
all_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_bnot, 
assert-es-eq-E-base, 
es-base-pred-properties, 
es-causal-antireflexive, 
decidable__assert, 
es-causl-total-base, 
es-base-pred-le, 
es-pred-cle, 
es-causl_transitivity, 
sq_stable__assert, 
not_assert_elim, 
and_wf, 
assert_elim, 
btrue_neq_bfalse, 
es-pred_property, 
es-pred_wf
\mforall{}[es:EO].  \mforall{}[e:E].    uiff(\muparrow{}first(e);\mforall{}[e':E].  \mneg{}(e'  <  e)  supposing  loc(e')  =  loc(e))
Date html generated:
2015_07_17-AM-08_35_50
Last ObjectModification:
2015_01_27-PM-03_01_01
Home
Index