Nuprl Lemma : fl_all_decomp

[I:fset(ℕ)]. ∀[i:ℕ]. ∀[phi:Point(face_lattice(I+i))].
  (phi (∀i.phi) ∨ phi ∧ (i=0) ∨ phi ∧ (i=1) ∈ Point(face_lattice(I+i)))


Proof




Definitions occuring in Statement :  fl_all: (∀i.phi) fl1: (x=1) fl0: (x=0) face_lattice: face_lattice(I) add-name: I+i lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B names: names(I) uimplies: supposing a nat: so_apply: x[s] prop: implies:  Q lattice-join: a ∨ b record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt fset-constrained-ac-lub: lub(P;ac1;ac2) fset-ac-lub: fset-ac-lub(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind fset-union: x ⋃ y l-union: as ⋃ bs lattice-meet: a ∧ b fset-constrained-ac-glb: glb(P;ac1;ac2) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-0: 0 empty-fset: {} nil: [] it: fl_all: (∀i.phi) fl-all-hom: fl-all-hom(I;i) fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) fset-image: f"(s) bdd-distributive-lattice: BoundedDistributiveLattice and: P ∧ Q cand: c∧ B guard: {T} rev_implies:  Q iff: ⇐⇒ Q true: True squash: T lattice-1: 1 top: Top union-deq: union-deq(A;B;a;b) bool: 𝔹 unit: Unit uiff: uiff(P;Q) sq_type: SQType(T) exists: x:A. B[x] or: P ∨ Q bnot: ¬bb assert: b false: False
Lemmas referenced :  face_lattice-induction add-name_wf equal_wf lattice-point_wf face_lattice_wf lattice-join_wf fl_all_wf lattice-meet_wf fl0_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self fl1_wf sq_stable__equal lattice-0_wf names_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf istype-nat fset_wf iff_weakening_equal bdd-distributive-lattice-subtype-bdd-lattice lattice-join-1 bdd-distributive-lattice_wf lattice-1_wf true_wf squash_wf rec_select_update_lemma fl_all-1 istype-universe fl_all-join face_lattice-point-subtype f-subset-add-name subtype_rel_self istype-void bdd-distributive-lattice-subtype-distributive-lattice distributive-lattice-distrib lattice_properties bdd-distributive-lattice-subtype-lattice eq_int_wf eqtt_to_assert assert_of_eq_int subtype_base_sq int_subtype_base eqff_to_assert set_subtype_base bool_subtype_base bool_cases_sqequal bool_wf assert-bnot neg_assert_of_eq_int fl_all-meet fl_all-fl0 lattice-meet-0 lattice-join-0 lattice-meet-idempotent FL-meet-0-1 not-added-name fl_all-fl1 face-lattice-property free-dist-lattice-with-constraints-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin extract_by_obid sqequalHypSubstitution dependent_functionElimination isectElimination hypothesisEquality hypothesis sqequalRule lambdaEquality_alt applyEquality because_Cache dependent_set_memberEquality_alt universeIsType intEquality independent_isectElimination closedConclusion natural_numberEquality independent_functionElimination lambdaFormation_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry equalityIsType1 independent_pairFormation instantiate productEquality cumulativity isect_memberEquality_alt axiomEquality isectIsTypeImplies productElimination baseClosed imageMemberEquality dependent_set_memberEquality universeEquality imageElimination lambdaEquality voidEquality voidElimination isect_memberEquality unionElimination equalityElimination dependent_pairFormation_alt equalityIsType4 baseApply promote_hyp hyp_replacement

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].  \mforall{}[phi:Point(face\_lattice(I+i))].    (phi  =  (\mforall{}i.phi)  \mvee{}  phi  \mwedge{}  (i=0)  \mvee{}  phi  \mwedge{}  (i=1))



Date html generated: 2019_11_04-PM-05_34_36
Last ObjectModification: 2018_11_08-AM-11_12_51

Theory : cubical!type!theory


Home Index