Nuprl Lemma : fl_all_decomp
∀[I:fset(ℕ)]. ∀[i:ℕ]. ∀[phi:Point(face_lattice(I+i))].
  (phi = (∀i.phi) ∨ phi ∧ (i=0) ∨ phi ∧ (i=1) ∈ Point(face_lattice(I+i)))
Proof
Definitions occuring in Statement : 
fl_all: (∀i.phi)
, 
fl1: (x=1)
, 
fl0: (x=0)
, 
face_lattice: face_lattice(I)
, 
add-name: I+i
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
names: names(I)
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
lattice-join: a ∨ b
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
fset-constrained-ac-lub: lub(P;ac1;ac2)
, 
fset-ac-lub: fset-ac-lub(eq;ac1;ac2)
, 
fset-minimals: fset-minimals(x,y.less[x; y]; s)
, 
fset-filter: {x ∈ s | P[x]}
, 
filter: filter(P;l)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-union: x ⋃ y
, 
l-union: as ⋃ bs
, 
lattice-meet: a ∧ b
, 
fset-constrained-ac-glb: glb(P;ac1;ac2)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
lattice-0: 0
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
fl_all: (∀i.phi)
, 
fl-all-hom: fl-all-hom(I;i)
, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1)
, 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
fset-image: f"(s)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
squash: ↓T
, 
lattice-1: 1
, 
top: Top
, 
union-deq: union-deq(A;B;a;b)
, 
bool: 𝔹
, 
unit: Unit
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
Lemmas referenced : 
face_lattice-induction, 
add-name_wf, 
equal_wf, 
lattice-point_wf, 
face_lattice_wf, 
lattice-join_wf, 
fl_all_wf, 
lattice-meet_wf, 
fl0_wf, 
trivial-member-add-name1, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
fl1_wf, 
sq_stable__equal, 
lattice-0_wf, 
names_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
istype-nat, 
fset_wf, 
iff_weakening_equal, 
bdd-distributive-lattice-subtype-bdd-lattice, 
lattice-join-1, 
bdd-distributive-lattice_wf, 
lattice-1_wf, 
true_wf, 
squash_wf, 
rec_select_update_lemma, 
fl_all-1, 
istype-universe, 
fl_all-join, 
face_lattice-point-subtype, 
f-subset-add-name, 
subtype_rel_self, 
istype-void, 
bdd-distributive-lattice-subtype-distributive-lattice, 
distributive-lattice-distrib, 
lattice_properties, 
bdd-distributive-lattice-subtype-lattice, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
subtype_base_sq, 
int_subtype_base, 
eqff_to_assert, 
set_subtype_base, 
bool_subtype_base, 
bool_cases_sqequal, 
bool_wf, 
assert-bnot, 
neg_assert_of_eq_int, 
fl_all-meet, 
fl_all-fl0, 
lattice-meet-0, 
lattice-join-0, 
lattice-meet-idempotent, 
FL-meet-0-1, 
not-added-name, 
fl_all-fl1, 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
because_Cache, 
dependent_set_memberEquality_alt, 
universeIsType, 
intEquality, 
independent_isectElimination, 
closedConclusion, 
natural_numberEquality, 
independent_functionElimination, 
lambdaFormation_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
equalityIsType1, 
independent_pairFormation, 
instantiate, 
productEquality, 
cumulativity, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
productElimination, 
baseClosed, 
imageMemberEquality, 
dependent_set_memberEquality, 
universeEquality, 
imageElimination, 
lambdaEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
unionElimination, 
equalityElimination, 
dependent_pairFormation_alt, 
equalityIsType4, 
baseApply, 
promote_hyp, 
hyp_replacement
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].  \mforall{}[phi:Point(face\_lattice(I+i))].    (phi  =  (\mforall{}i.phi)  \mvee{}  phi  \mwedge{}  (i=0)  \mvee{}  phi  \mwedge{}  (i=1))
Date html generated:
2019_11_04-PM-05_34_36
Last ObjectModification:
2018_11_08-AM-11_12_51
Theory : cubical!type!theory
Home
Index