Nuprl Lemma : same-cubical-type-by-list-cases

[Gamma:j⊢]. ∀L:{Gamma ⊢ _:𝔽List. ∀A,B:{Gamma, \/(L) ⊢ _}.  Gamma, \/(L) ⊢ supposing (∀phi∈L.Gamma, phi ⊢ B)


Proof




Definitions occuring in Statement :  same-cubical-type: Gamma ⊢ B context-subset: Gamma, phi face-or-list: \/(L) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet l_all: (∀x∈L.P[x]) list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: uimplies: supposing a subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice exists: x:A. B[x] cand: c∧ B face-or-list: \/(L) l_all: (∀x∈L.P[x]) select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] same-cubical-type: Gamma ⊢ B int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False uiff: uiff(P;Q) decidable: Dec(P) or: P ∨ Q subtract: m ge: i ≥  less_than': less_than'(a;b) nat_plus: + guard: {T} cons: [a b] less_than: a < b squash: T l_exists: (∃x∈L. P[x]) true: True respects-equality: respects-equality(S;T)
Lemmas referenced :  list_induction list_wf cubical-term_wf face-type_wf cubical_set_wf cubical-type_wf context-subset_wf face-or-list_wf l_all_wf2 same-cubical-type_wf context-subset-subtype face-or-list-eq-1 l_exists_iff equal_wf lattice-point_wf face_lattice_wf cubical-term-at_wf subtype_rel_self subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf lattice-1_wf l_member_wf I_cube_wf fset_wf nat_wf reduce_nil_lemma length_of_nil_lemma stuck-spread istype-base same-cubical-type-0 int_seg_wf int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf face-0_wf reduce_cons_lemma face-or_wf same-cubical-type-by-cases context-subset-subtype-or2 length_wf add-member-int_seg2 cons_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma length_of_cons_lemma non_neg_length decidable__lt itermAdd_wf int_term_value_add_lemma istype-le istype-less_than select_cons_tl_sq2 int_seg_subtype_nat istype-false add_nat_plus length_wf_nat nat_plus_properties add-is-int-iff intformeq_wf int_formula_prop_eq_lemma false_wf select_wf squash_wf true_wf istype-universe cubical-type-cumulativity2 cubical_set_cumulativity-i-j iff_weakening_equal face-type-at respects-equality_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination sqequalRule independent_functionElimination universeIsType hypothesisEquality hypothesis cumulativity lambdaEquality_alt functionEquality isectEquality setElimination rename applyEquality independent_isectElimination because_Cache dependent_functionElimination productElimination productEquality setIsType inhabitedIsType dependent_pairFormation_alt independent_pairFormation productIsType equalityIstype equalityTransitivity equalitySymmetry Error :memTop,  baseClosed axiomEquality functionIsType natural_numberEquality approximateComputation int_eqEquality voidElimination closedConclusion dependent_set_memberEquality_alt unionElimination addEquality applyLambdaEquality pointwiseFunctionality promote_hyp baseApply isectIsType imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}[Gamma:j\mvdash{}]
    \mforall{}L:\{Gamma  \mvdash{}  \_:\mBbbF{}\}  List.  \mforall{}A,B:\{Gamma,  \mbackslash{}/(L)  \mvdash{}  \_\}.
        Gamma,  \mbackslash{}/(L)  \mvdash{}  A  =  B  supposing  (\mforall{}phi\mmember{}L.Gamma,  phi  \mvdash{}  A  =  B)



Date html generated: 2020_05_20-PM-03_02_16
Last ObjectModification: 2020_04_06-PM-08_27_03

Theory : cubical!type!theory


Home Index