Nuprl Lemma : ip-between-same

[rv:InnerProductSpace]. ∀[a,b:Point].  (a_b_a  b ≡ a)


Proof




Definitions occuring in Statement :  ip-between: a_b_c inner-product-space: InnerProductSpace ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uiff: uiff(P;Q) less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: uimplies: supposing a guard: {T} subtype_rel: A ⊆B false: False not: ¬A ss-eq: x ≡ y prop: ip-between: a_b_c implies:  Q member: t ∈ T uall: [x:A]. B[x] top: Top req_int_terms: t1 ≡ t2 has-value: (a)↓ it: nil: [] ml-term-to-poly: Error :ml-term-to-poly,  label: ...$L... t rev_uimplies: rev_uimplies(P;Q) true: True squash: T less_than: a < b rev_implies:  Q iff: ⇐⇒ Q all: x:A. B[x] or: P ∨ Q rneq: x ≠ y
Lemmas referenced :  req_weakening rnexp2 rv-norm-squared req_inversion radd_functionality req_functionality int-to-real_wf le_wf false_wf rnexp_wf rv-ip_wf rv-sub_wf rv-norm_wf rmul_wf radd_wf ss-point_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-sep_wf ip-between_wf req-iff-rsub-is-0 real_term_value_const_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_sub_lemma evalall-sqequal itermConstant_wf itermMultiply_wf itermVar_wf itermAdd_wf itermSubtract_wf real_polynomial_null rmul-zero-both rmul_comm req_wf rleq_wf real_wf rless_wf rless-int rmul_preserves_req rv-0_wf ss-eq_wf iff_transitivity iff_weakening_uiff square-is-zero uiff_transitivity rv-norm-is-zero rv-sub-is-zero ss-eq_inversion
Rules used in proof :  productElimination independent_pairFormation natural_numberEquality dependent_set_memberEquality voidElimination isect_memberEquality independent_isectElimination instantiate applyEquality because_Cache dependent_functionElimination lambdaEquality sqequalRule hypothesis hypothesisEquality thin isectElimination extract_by_obid sqequalHypSubstitution lambdaFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution voidEquality intEquality int_eqEquality mlComputation sqleReflexivity computeAll productEquality setEquality rename setElimination baseClosed imageMemberEquality independent_functionElimination inrFormation

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b:Point].    (a\_b\_a  {}\mRightarrow{}  b  \mequiv{}  a)



Date html generated: 2018_05_22-PM-09_31_47
Last ObjectModification: 2018_05_18-PM-04_43_18

Theory : inner!product!spaces


Home Index