Nuprl Lemma : ip-between-same
∀[rv:InnerProductSpace]. ∀[a,b:Point].  (a_b_a 
⇒ b ≡ a)
Proof
Definitions occuring in Statement : 
ip-between: a_b_c
, 
inner-product-space: InnerProductSpace
, 
ss-eq: x ≡ y
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
false: False
, 
not: ¬A
, 
ss-eq: x ≡ y
, 
prop: ℙ
, 
ip-between: a_b_c
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
req_int_terms: t1 ≡ t2
, 
has-value: (a)↓
, 
it: ⋅
, 
nil: []
, 
ml-term-to-poly: Error :ml-term-to-poly, 
label: ...$L... t
, 
rev_uimplies: rev_uimplies(P;Q)
, 
true: True
, 
squash: ↓T
, 
less_than: a < b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
rneq: x ≠ y
Lemmas referenced : 
req_weakening, 
rnexp2, 
rv-norm-squared, 
req_inversion, 
radd_functionality, 
req_functionality, 
int-to-real_wf, 
le_wf, 
false_wf, 
rnexp_wf, 
rv-ip_wf, 
rv-sub_wf, 
rv-norm_wf, 
rmul_wf, 
radd_wf, 
ss-point_wf, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
real-vector-space_subtype1, 
ss-sep_wf, 
ip-between_wf, 
req-iff-rsub-is-0, 
real_term_value_const_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_sub_lemma, 
evalall-sqequal, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermAdd_wf, 
itermSubtract_wf, 
real_polynomial_null, 
rmul-zero-both, 
rmul_comm, 
req_wf, 
rleq_wf, 
real_wf, 
rless_wf, 
rless-int, 
rmul_preserves_req, 
rv-0_wf, 
ss-eq_wf, 
iff_transitivity, 
iff_weakening_uiff, 
square-is-zero, 
uiff_transitivity, 
rv-norm-is-zero, 
rv-sub-is-zero, 
ss-eq_inversion
Rules used in proof : 
productElimination, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
voidElimination, 
isect_memberEquality, 
independent_isectElimination, 
instantiate, 
applyEquality, 
because_Cache, 
dependent_functionElimination, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
extract_by_obid, 
sqequalHypSubstitution, 
lambdaFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
voidEquality, 
intEquality, 
int_eqEquality, 
mlComputation, 
sqleReflexivity, 
computeAll, 
productEquality, 
setEquality, 
rename, 
setElimination, 
baseClosed, 
imageMemberEquality, 
independent_functionElimination, 
inrFormation
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b:Point].    (a\_b\_a  {}\mRightarrow{}  b  \mequiv{}  a)
Date html generated:
2018_05_22-PM-09_31_47
Last ObjectModification:
2018_05_18-PM-04_43_18
Theory : inner!product!spaces
Home
Index