Nuprl Lemma : ip-ge-dist

[rv:InnerProductSpace]. ∀[a,b,c,d:Point].  ((||a b|| ≤ ||c d||)  (¬¬(∃w:Point. (a_b_w ∧ cd=aw))))


Proof




Definitions occuring in Statement :  ip-between: a_b_c ip-congruent: ab=cd rv-norm: ||x|| rv-sub: y inner-product-space: InnerProductSpace rleq: x ≤ y ss-point: Point uall: [x:A]. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q not: ¬A false: False prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] exists: x:A. B[x] stable: Stable{P} or: P ∨ Q all: x:A. B[x] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rsub: y sq_exists: x:{A| B[x]} cand: c∧ B ip-congruent: ab=cd ss-eq: x ≡ y iff: ⇐⇒ Q rev_implies:  Q rv-sub: y rv-minus: -x
Lemmas referenced :  not_wf exists_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ip-between_wf ip-congruent_wf rleq_wf rv-norm_wf rv-sub_wf real_wf int-to-real_wf req_wf rmul_wf rv-ip_wf stable__not false_wf or_wf ss-sep_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle ip-extend-lemma rsub_wf radd-preserves-rleq radd_wf rminus_wf uiff_transitivity rleq_functionality radd_comm radd_functionality req_weakening radd-rminus-assoc radd-zero-both ip-dist-between req_functionality req_transitivity ip-between_functionality ss-eq_weakening ip-congruent_functionality rv-add_wf ip-between-trivial rv-norm_functionality ss-eq_wf rv-mul_wf rv-minus_wf rv-0_wf ss-eq_functionality rv-add_functionality rv-mul-linear rv-add-assoc rv-mul-1-add rv-mul-mul rv-add-swap rv-mul_functionality radd-int rmul-int rv-mul0 rv-mul1 rv-add-0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination extract_by_obid isectElimination hypothesisEquality applyEquality instantiate independent_isectElimination sqequalRule lambdaEquality productEquality because_Cache dependent_functionElimination setElimination rename setEquality natural_numberEquality isect_memberEquality functionEquality unionElimination dependent_set_memberEquality productElimination dependent_pairFormation independent_pairFormation addLevel impliesFunctionality existsFunctionality andLevelFunctionality existsLevelFunctionality impliesLevelFunctionality minusEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c,d:Point].
    ((||a  -  b||  \mleq{}  ||c  -  d||)  {}\mRightarrow{}  (\mneg{}\mneg{}(\mexists{}w:Point.  (a\_b\_w  \mwedge{}  cd=aw))))



Date html generated: 2017_10_05-AM-00_11_38
Last ObjectModification: 2017_03_19-PM-02_39_25

Theory : inner!product!spaces


Home Index