Nuprl Lemma : ip-ge-dist
∀[rv:InnerProductSpace]. ∀[a,b,c,d:Point].  ((||a - b|| ≤ ||c - d||) 
⇒ (¬¬(∃w:Point. (a_b_w ∧ cd=aw))))
Proof
Definitions occuring in Statement : 
ip-between: a_b_c
, 
ip-congruent: ab=cd
, 
rv-norm: ||x||
, 
rv-sub: x - y
, 
inner-product-space: InnerProductSpace
, 
rleq: x ≤ y
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
stable: Stable{P}
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rsub: x - y
, 
sq_exists: ∃x:{A| B[x]}
, 
cand: A c∧ B
, 
ip-congruent: ab=cd
, 
ss-eq: x ≡ y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rv-sub: x - y
, 
rv-minus: -x
Lemmas referenced : 
not_wf, 
exists_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ip-between_wf, 
ip-congruent_wf, 
rleq_wf, 
rv-norm_wf, 
rv-sub_wf, 
real_wf, 
int-to-real_wf, 
req_wf, 
rmul_wf, 
rv-ip_wf, 
stable__not, 
false_wf, 
or_wf, 
ss-sep_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
ip-extend-lemma, 
rsub_wf, 
radd-preserves-rleq, 
radd_wf, 
rminus_wf, 
uiff_transitivity, 
rleq_functionality, 
radd_comm, 
radd_functionality, 
req_weakening, 
radd-rminus-assoc, 
radd-zero-both, 
ip-dist-between, 
req_functionality, 
req_transitivity, 
ip-between_functionality, 
ss-eq_weakening, 
ip-congruent_functionality, 
rv-add_wf, 
ip-between-trivial, 
rv-norm_functionality, 
ss-eq_wf, 
rv-mul_wf, 
rv-minus_wf, 
rv-0_wf, 
ss-eq_functionality, 
rv-add_functionality, 
rv-mul-linear, 
rv-add-assoc, 
rv-mul-1-add, 
rv-mul-mul, 
rv-add-swap, 
rv-mul_functionality, 
radd-int, 
rmul-int, 
rv-mul0, 
rv-mul1, 
rv-add-0
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
productEquality, 
because_Cache, 
dependent_functionElimination, 
setElimination, 
rename, 
setEquality, 
natural_numberEquality, 
isect_memberEquality, 
functionEquality, 
unionElimination, 
dependent_set_memberEquality, 
productElimination, 
dependent_pairFormation, 
independent_pairFormation, 
addLevel, 
impliesFunctionality, 
existsFunctionality, 
andLevelFunctionality, 
existsLevelFunctionality, 
impliesLevelFunctionality, 
minusEquality
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c,d:Point].
    ((||a  -  b||  \mleq{}  ||c  -  d||)  {}\mRightarrow{}  (\mneg{}\mneg{}(\mexists{}w:Point.  (a\_b\_w  \mwedge{}  cd=aw))))
Date html generated:
2017_10_05-AM-00_11_38
Last ObjectModification:
2017_03_19-PM-02_39_25
Theory : inner!product!spaces
Home
Index