Nuprl Lemma : unit-ball-approxn

[k:ℕ]. ∀[n:ℕ+].
  unit-ball-approx(n;k) ≡ {f:ℕn ⟶ {-k..k 1-}| 
                           ∃q:unit-ball-approx(n 1;k)
                            ∃z:{-k..k 1-}
                             (((Σ((q i) (q i) i < 1) (z z)) ≤ (k k))
                             ∧ (∀i:ℕ1. ((f i) (q i) ∈ ℤ))
                             ∧ ((f (n 1)) z ∈ ℤ))} 


Proof




Definitions occuring in Statement :  unit-ball-approx: unit-ball-approx(n;k) sum: Σ(f[x] x < k) int_seg: {i..j-} nat_plus: + nat: ext-eq: A ≡ B uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] multiply: m subtract: m add: m minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B unit-ball-approx: unit-ball-approx(n;k) exists: x:A. B[x] nat: nat_plus: + ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T so_lambda: λ2x.t[x] so_apply: x[s] less_than': less_than'(a;b) cand: c∧ B uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q subtract: m true: True guard: {T} sq_type: SQType(T)
Lemmas referenced :  unit-ball-approx_wf subtract_wf nat_plus_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le int_seg_wf sum_wf int_seg_properties int_seg_subtype istype-false multiply-is-int-iff set_subtype_base le_wf int_subtype_base not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 lelt_wf decidable__lt istype-less_than nat_plus_wf istype-nat squash_wf true_wf sum_split1 subtype_rel_self iff_weakening_equal sum-unroll istype-top square_non_neg le_functionality add_functionality_wrt_le le_weakening subtype_rel_function add-is-int-iff itermMultiply_wf itermAdd_wf int_term_value_mul_lemma int_term_value_add_lemma false_wf subtype_base_sq add_functionality_wrt_eq sum_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation lambdaEquality_alt sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt hypothesisEquality sqequalRule productIsType universeIsType extract_by_obid isectElimination hypothesis natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination minusEquality addEquality because_Cache productElimination imageElimination multiplyEquality applyEquality functionIsType equalityIstype lambdaFormation_alt baseApply closedConclusion baseClosed intEquality inhabitedIsType equalityTransitivity equalitySymmetry sqequalBase setIsType independent_pairEquality axiomEquality isectIsTypeImplies imageMemberEquality instantiate universeEquality lessCases axiomSqEquality pointwiseFunctionality promote_hyp cumulativity

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].
    unit-ball-approx(n;k)  \mequiv{}  \{f:\mBbbN{}n  {}\mrightarrow{}  \{-k..k  +  1\msupminus{}\}| 
                                                      \mexists{}q:unit-ball-approx(n  -  1;k)
                                                        \mexists{}z:\{-k..k  +  1\msupminus{}\}
                                                          (((\mSigma{}((q  i)  *  (q  i)  |  i  <  n  -  1)  +  (z  *  z))  \mleq{}  (k  *  k))
                                                          \mwedge{}  (\mforall{}i:\mBbbN{}n  -  1.  ((f  i)  =  (q  i)))
                                                          \mwedge{}  ((f  (n  -  1))  =  z))\} 



Date html generated: 2019_10_30-AM-11_28_17
Last ObjectModification: 2019_06_28-PM-01_56_16

Theory : real!vectors


Home Index