Nuprl Lemma : cosine-poly-approx
∀[x:{x:ℝ| |x| ≤ (r1/r(2))} ]. ∀[k:ℕ]. ∀[N:ℕ+].
  (|cosine(x) - (r(cosine-approx(x;k;N))/r(2 * N))| ≤ ((|x|^(2 * k) + 2/r(((2 * k) + 2)!)) + (r1/r(N))))
Proof
Definitions occuring in Statement : 
cosine-approx: cosine-approx(x;k;N)
, 
cosine: cosine(x)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rnexp: x^k1
, 
rsub: x - y
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
fact: (n)!
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
sq_stable: SqStable(P)
, 
ireal-approx: j-approx(x;M;z)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
so_apply: x[s]
, 
rge: x ≥ y
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
stable: Stable{P}
Lemmas referenced : 
cosine-approx-property, 
sq_stable__rleq, 
rabs_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
rleq_functionality_wrt_implies, 
rsub_wf, 
cosine_wf, 
cosine-approx_wf, 
nat_plus_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
radd_wf, 
rsum_wf, 
int-rmul_wf, 
fastexp_wf, 
int_seg_subtype_nat, 
istype-false, 
int-rdiv_wf, 
fact_wf, 
int_seg_properties, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
istype-le, 
rnexp_wf, 
int_seg_wf, 
rleq_weakening_equal, 
r-triangle-inequality2, 
itermAdd_wf, 
int_term_value_add_lemma, 
radd_functionality_wrt_rleq, 
nat_plus_wf, 
istype-nat, 
real_wf, 
rleq_wf, 
cosine-poly-approx-1, 
zero-rleq-rabs, 
rleq-int-fractions3, 
istype-less_than, 
rleq_transitivity, 
rleq_functionality, 
radd_functionality, 
req_weakening, 
rabs_functionality, 
rsub_functionality, 
nat_plus_inc_int_nzero, 
stable_req, 
false_wf, 
not_wf, 
req_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
rabs-of-nonpos, 
rleq_weakening_rless, 
rminus_wf, 
req_functionality, 
cosine_functionality, 
cosine-rminus, 
not-rless, 
rabs-of-nonneg, 
rnexp-nonneg, 
rnexp2-nonneg, 
rsum_functionality2, 
int-rmul_functionality, 
int-rdiv_functionality, 
req_inversion, 
rabs-rnexp, 
rnexp-mul
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
independent_functionElimination, 
closedConclusion, 
natural_numberEquality, 
independent_isectElimination, 
sqequalRule, 
inrFormation_alt, 
dependent_functionElimination, 
because_Cache, 
productElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
universeIsType, 
imageElimination, 
multiplyEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
minusEquality, 
applyEquality, 
lambdaFormation_alt, 
dependent_set_memberEquality_alt, 
addEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setIsType, 
productIsType, 
unionEquality, 
functionEquality, 
functionIsType, 
unionIsType
Latex:
\mforall{}[x:\{x:\mBbbR{}|  |x|  \mleq{}  (r1/r(2))\}  ].  \mforall{}[k:\mBbbN{}].  \mforall{}[N:\mBbbN{}\msupplus{}].
    (|cosine(x)  -  (r(cosine-approx(x;k;N))/r(2  *  N))|  \mleq{}  ((|x|\^{}(2  *  k)  +  2/r(((2  *  k)  +  2)!))
    +  (r1/r(N))))
Date html generated:
2019_10_29-AM-10_37_16
Last ObjectModification:
2019_02_02-PM-00_23_11
Theory : reals
Home
Index