Nuprl Lemma : r2-det-convex2

[p,q,r,t,s:ℝ^2]. ∀[a,b,c:ℝ].
  |a*p b*q c*rts| ((a |pts|) (b |qts|) (c |rts|)) supposing ((a c) r1) ∧ r1 a ≠ r0


Proof




Definitions occuring in Statement :  r2-det: |pqr| real-vec-mul: a*X real-vec-add: Y real-vec: ^n rneq: x ≠ y rsub: y req: y rmul: b radd: b int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] req-vec: req-vec(n;x;y) real-vec-mul: a*X real-vec-add: Y real-vec: ^n uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q rsub: y
Lemmas referenced :  req_witness r2-det_wf real-vec-add_wf false_wf le_wf real-vec-mul_wf radd_wf rmul_wf req_wf int-to-real_wf rneq_wf rsub_wf real_wf real-vec_wf r2-det-convex1 rdiv_wf int_seg_wf equal_wf req_weakening uiff_transitivity req_functionality rmul-distrib radd_functionality rmul_functionality rmul_comm rmul-ac rmul-rdiv-cancel r2-det_functionality real-vec-add_functionality req-vec_weakening rmul_preserves_req rminus_wf radd-preserves-req squash_wf true_wf iff_weakening_equal rmul-rdiv-cancel2 req_transitivity rmul_over_rminus rmul-one-both rminus_functionality radd_comm rminus-as-rmul radd-assoc req_inversion rmul-identity1 rmul-distrib2 radd-int rmul-zero-both radd-zero-both radd-ac radd-rminus-both real-vec-mul_functionality rmul-assoc radd-rminus-assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation hypothesis hypothesisEquality because_Cache independent_functionElimination productEquality isect_memberEquality equalityTransitivity equalitySymmetry independent_isectElimination dependent_functionElimination applyEquality minusEquality addEquality lambdaEquality imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[p,q,r,t,s:\mBbbR{}\^{}2].  \mforall{}[a,b,c:\mBbbR{}].
    |a*p  +  b*q  +  c*rts|  =  ((a  *  |pts|)  +  (b  *  |qts|)  +  (c  *  |rts|)) 
    supposing  ((a  +  b  +  c)  =  r1)  \mwedge{}  r1  -  a  \mneq{}  r0



Date html generated: 2017_10_03-AM-11_45_17
Last ObjectModification: 2017_04_11-PM-05_32_29

Theory : reals


Home Index