Nuprl Lemma : r2-det-convex2
∀[p,q,r,t,s:ℝ^2]. ∀[a,b,c:ℝ].
  |a*p + b*q + c*rts| = ((a * |pts|) + (b * |qts|) + (c * |rts|)) supposing ((a + b + c) = r1) ∧ r1 - a ≠ r0
Proof
Definitions occuring in Statement : 
r2-det: |pqr|
, 
real-vec-mul: a*X
, 
real-vec-add: X + Y
, 
real-vec: ℝ^n
, 
rneq: x ≠ y
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
req-vec: req-vec(n;x;y)
, 
real-vec-mul: a*X
, 
real-vec-add: X + Y
, 
real-vec: ℝ^n
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rsub: x - y
Lemmas referenced : 
req_witness, 
r2-det_wf, 
real-vec-add_wf, 
false_wf, 
le_wf, 
real-vec-mul_wf, 
radd_wf, 
rmul_wf, 
req_wf, 
int-to-real_wf, 
rneq_wf, 
rsub_wf, 
real_wf, 
real-vec_wf, 
r2-det-convex1, 
rdiv_wf, 
int_seg_wf, 
equal_wf, 
req_weakening, 
uiff_transitivity, 
req_functionality, 
rmul-distrib, 
radd_functionality, 
rmul_functionality, 
rmul_comm, 
rmul-ac, 
rmul-rdiv-cancel, 
r2-det_functionality, 
real-vec-add_functionality, 
req-vec_weakening, 
rmul_preserves_req, 
rminus_wf, 
radd-preserves-req, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
rmul-rdiv-cancel2, 
req_transitivity, 
rmul_over_rminus, 
rmul-one-both, 
rminus_functionality, 
radd_comm, 
rminus-as-rmul, 
radd-assoc, 
req_inversion, 
rmul-identity1, 
rmul-distrib2, 
radd-int, 
rmul-zero-both, 
radd-zero-both, 
radd-ac, 
radd-rminus-both, 
real-vec-mul_functionality, 
rmul-assoc, 
radd-rminus-assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
productEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_functionElimination, 
applyEquality, 
minusEquality, 
addEquality, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}[p,q,r,t,s:\mBbbR{}\^{}2].  \mforall{}[a,b,c:\mBbbR{}].
    |a*p  +  b*q  +  c*rts|  =  ((a  *  |pts|)  +  (b  *  |qts|)  +  (c  *  |rts|)) 
    supposing  ((a  +  b  +  c)  =  r1)  \mwedge{}  r1  -  a  \mneq{}  r0
Date html generated:
2017_10_03-AM-11_45_17
Last ObjectModification:
2017_04_11-PM-05_32_29
Theory : reals
Home
Index