Nuprl Lemma : rmin-rmax-real-decomp

[r:ℝ]. ((rmin(|r|;rmax(r0;r)) rmax(-(|r|);rmin(r0;r))) r)


Proof




Definitions occuring in Statement :  rabs: |x| rmin: rmin(x;y) rmax: rmax(x;y) req: y rminus: -(x) radd: b int-to-real: r(n) real: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B real: bdd-diff: bdd-diff(f;g) exists: x:A. B[x] nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False all: x:A. B[x] int-to-real: r(n) rmin: rmin(x;y) rabs: |x| rminus: -(x) rmax: rmax(x;y) nat_plus: + decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: sq_type: SQType(T) guard: {T} iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt less_than: a < b true: True squash: T bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b absval: |i|
Lemmas referenced :  req_witness radd_wf rmin_wf rabs_wf rmax_wf int-to-real_wf rminus_wf real_wf req-iff-bdd-diff nat_plus_wf istype-void istype-le subtype_base_sq int_subtype_base nat_plus_properties decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermMultiply_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf absval_wf subtract_wf bdd-diff_functionality radd-bdd-diff bdd-diff_weakening lt_int_wf eqtt_to_assert assert_of_lt_int istype-top eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than imin_wf imax_wf ifthenelse_wf le_int_wf assert_of_le_int le_wf intformle_wf int_formula_prop_le_lemma intformand_wf itermMinus_wf int_formula_prop_and_lemma int_term_value_minus_lemma add-zero intformless_wf int_formula_prop_less_lemma zero-add absval_unfold add_functionality_wrt_eq imin_unfold squash_wf true_wf istype-universe imax_unfold iff_weakening_equal itermSubtract_wf int_term_value_subtract_lemma istype-false
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality independent_functionElimination universeIsType productElimination independent_isectElimination applyEquality lambdaEquality_alt setElimination rename inhabitedIsType because_Cache sqequalRule addEquality equalityTransitivity equalitySymmetry dependent_pairFormation_alt dependent_set_memberEquality_alt independent_pairFormation lambdaFormation_alt voidElimination instantiate cumulativity intEquality dependent_functionElimination unionElimination approximateComputation int_eqEquality isect_memberEquality_alt equalityIstype functionIsType minusEquality equalityElimination lessCases axiomSqEquality isectIsTypeImplies imageMemberEquality baseClosed imageElimination promote_hyp sqequalIntensionalEquality universeEquality

Latex:
\mforall{}[r:\mBbbR{}].  ((rmin(|r|;rmax(r0;r))  +  rmax(-(|r|);rmin(r0;r)))  =  r)



Date html generated: 2019_10_29-AM-09_34_45
Last ObjectModification: 2019_04_12-AM-11_18_48

Theory : reals


Home Index