Nuprl Lemma : rmin-rmax-real-decomp
∀[r:ℝ]. ((rmin(|r|;rmax(r0;r)) + rmax(-(|r|);rmin(r0;r))) = r)
Proof
Definitions occuring in Statement : 
rabs: |x|
, 
rmin: rmin(x;y)
, 
rmax: rmax(x;y)
, 
req: x = y
, 
rminus: -(x)
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
bdd-diff: bdd-diff(f;g)
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
false: False
, 
all: ∀x:A. B[x]
, 
int-to-real: r(n)
, 
rmin: rmin(x;y)
, 
rabs: |x|
, 
rminus: -(x)
, 
rmax: rmax(x;y)
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
less_than: a < b
, 
true: True
, 
squash: ↓T
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
absval: |i|
Lemmas referenced : 
req_witness, 
radd_wf, 
rmin_wf, 
rabs_wf, 
rmax_wf, 
int-to-real_wf, 
rminus_wf, 
real_wf, 
req-iff-bdd-diff, 
nat_plus_wf, 
istype-void, 
istype-le, 
subtype_base_sq, 
int_subtype_base, 
nat_plus_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
absval_wf, 
subtract_wf, 
bdd-diff_functionality, 
radd-bdd-diff, 
bdd-diff_weakening, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
istype-less_than, 
imin_wf, 
imax_wf, 
ifthenelse_wf, 
le_int_wf, 
assert_of_le_int, 
le_wf, 
intformle_wf, 
int_formula_prop_le_lemma, 
intformand_wf, 
itermMinus_wf, 
int_formula_prop_and_lemma, 
int_term_value_minus_lemma, 
add-zero, 
intformless_wf, 
int_formula_prop_less_lemma, 
zero-add, 
absval_unfold, 
add_functionality_wrt_eq, 
imin_unfold, 
squash_wf, 
true_wf, 
istype-universe, 
imax_unfold, 
iff_weakening_equal, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
istype-false
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
independent_functionElimination, 
universeIsType, 
productElimination, 
independent_isectElimination, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
because_Cache, 
sqequalRule, 
addEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation_alt, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
lambdaFormation_alt, 
voidElimination, 
instantiate, 
cumulativity, 
intEquality, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
equalityIstype, 
functionIsType, 
minusEquality, 
equalityElimination, 
lessCases, 
axiomSqEquality, 
isectIsTypeImplies, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
promote_hyp, 
sqequalIntensionalEquality, 
universeEquality
Latex:
\mforall{}[r:\mBbbR{}].  ((rmin(|r|;rmax(r0;r))  +  rmax(-(|r|);rmin(r0;r)))  =  r)
Date html generated:
2019_10_29-AM-09_34_45
Last ObjectModification:
2019_04_12-AM-11_18_48
Theory : reals
Home
Index