Nuprl Lemma : stump-bars

T:Type. ∀t:wfd-tree(T). ∀alpha:ℕ ⟶ T.  ∃n:ℕ(¬↑(stump(t) alpha))


Proof




Definitions occuring in Statement :  stump: stump(t) wfd-tree: wfd-tree(T) nat: assert: b all: x:A. B[x] exists: x:A. B[x] not: ¬A apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: stump: stump(t) top: Top assert: b ifthenelse: if then else fi  bfalse: ff guard: {T} exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) sq_stable: SqStable(P) squash: T subtract: m true: True bool: 𝔹 unit: Unit it: btrue: tt sq_type: SQType(T) bnot: ¬bb ge: i ≥  int_upper: {i...} int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  wfd-tree-induction all_wf nat_wf exists_wf not_wf assert_wf stump_wf subtype_rel_dep_function int_seg_wf int_seg_subtype_nat false_wf wfd-tree_wf wfd_tree_rec_leaf_lemma wfd_tree_rec_node_lemma le_wf decidable__le not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int le_antisymmetry_iff eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int add-subtract-cancel int_upper_subtype_nat nat_properties nequal-le-implies subtract_wf minus-minus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality functionEquality hypothesis cumulativity because_Cache applyEquality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation independent_functionElimination isect_memberEquality voidElimination voidEquality functionExtensionality universeEquality dependent_pairFormation dependent_set_memberEquality addEquality unionElimination productElimination imageMemberEquality baseClosed imageElimination intEquality minusEquality equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate hypothesis_subsumption

Latex:
\mforall{}T:Type.  \mforall{}t:wfd-tree(T).  \mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  T.    \mexists{}n:\mBbbN{}.  (\mneg{}\muparrow{}(stump(t)  n  alpha))



Date html generated: 2017_04_14-AM-07_45_24
Last ObjectModification: 2017_02_27-PM-03_16_23

Theory : co-recursion


Home Index