Nuprl Lemma : strong-continuity-test-bound-prop2
∀[T:Type]. ∀[M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕn?)]. ∀[n:ℕ]. ∀[f:ℕn ⟶ T]. ∀[b:ℕn].
  ((↑isl(strong-continuity-test-bound(M;n;f;b))) 
⇒ (∀i:ℕ. (b < i 
⇒ i < n 
⇒ (↑isr(M i f)))))
Proof
Definitions occuring in Statement : 
strong-continuity-test-bound: strong-continuity-test-bound(M;n;f;b)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
isr: isr(x)
, 
isl: isl(x)
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
unit: Unit
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
less_than': less_than'(a;b)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
sq_type: SQType(T)
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
true: True
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
decidable__equal_int, 
true_wf, 
squash_wf, 
set_wf, 
assert_functionality_wrt_uiff, 
decidable__equal_nat, 
not-isl-assert-isr, 
assert_of_lt_int, 
iff_weakening_uiff, 
iff_transitivity, 
assert_of_eq_int, 
lelt_wf, 
decidable__lt, 
assert_of_bnot, 
eqff_to_assert, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
equal-wf-base-T, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
lt_int_wf, 
int_subtype_base, 
equal-wf-base, 
not_wf, 
bnot_wf, 
eq_int_wf, 
int_seg_subtype_nat, 
subtype_rel_union, 
strong-continuity-test-bound-unroll, 
le_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
false_wf, 
int_seg_subtype, 
subtype_rel_dep_function, 
int_seg_properties, 
strong-continuity-test-bound_wf, 
isl_wf, 
assert_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_wf, 
unit_wf2, 
int_seg_wf, 
isr_wf, 
assert_witness, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
productElimination, 
because_Cache, 
applyEquality, 
functionExtensionality, 
cumulativity, 
functionEquality, 
unionElimination, 
dependent_set_memberEquality, 
unionEquality, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
baseApply, 
closedConclusion, 
instantiate, 
impliesFunctionality, 
imageElimination, 
imageMemberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}n?)].  \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[b:\mBbbN{}n].
    ((\muparrow{}isl(strong-continuity-test-bound(M;n;f;b)))  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}.  (b  <  i  {}\mRightarrow{}  i  <  n  {}\mRightarrow{}  (\muparrow{}isr(M  i  f)))))
Date html generated:
2016_05_19-AM-11_59_51
Last ObjectModification:
2016_05_17-PM-04_55_11
Theory : continuity
Home
Index