Nuprl Lemma : strong-continuity-test-bound-prop2
∀[T:Type]. ∀[M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕn?)]. ∀[n:ℕ]. ∀[f:ℕn ⟶ T]. ∀[b:ℕn].
((↑isl(strong-continuity-test-bound(M;n;f;b)))
⇒ (∀i:ℕ. (b < i
⇒ i < n
⇒ (↑isr(M i f)))))
Proof
Definitions occuring in Statement :
strong-continuity-test-bound: strong-continuity-test-bound(M;n;f;b)
,
int_seg: {i..j-}
,
nat: ℕ
,
assert: ↑b
,
isr: isr(x)
,
isl: isl(x)
,
less_than: a < b
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
unit: Unit
,
apply: f a
,
function: x:A ⟶ B[x]
,
union: left + right
,
natural_number: $n
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
le: A ≤ B
,
subtype_rel: A ⊆r B
,
guard: {T}
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
less_than': less_than'(a;b)
,
decidable: Dec(P)
,
or: P ∨ Q
,
isl: isl(x)
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
btrue: tt
,
sq_type: SQType(T)
,
uiff: uiff(P;Q)
,
less_than: a < b
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
squash: ↓T
,
true: True
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
decidable__equal_int,
true_wf,
squash_wf,
set_wf,
assert_functionality_wrt_uiff,
decidable__equal_nat,
not-isl-assert-isr,
assert_of_lt_int,
iff_weakening_uiff,
iff_transitivity,
assert_of_eq_int,
lelt_wf,
decidable__lt,
assert_of_bnot,
eqff_to_assert,
eqtt_to_assert,
bool_subtype_base,
bool_wf,
subtype_base_sq,
bool_cases,
equal-wf-base-T,
int_formula_prop_eq_lemma,
intformeq_wf,
lt_int_wf,
int_subtype_base,
equal-wf-base,
not_wf,
bnot_wf,
eq_int_wf,
int_seg_subtype_nat,
subtype_rel_union,
strong-continuity-test-bound-unroll,
le_wf,
int_term_value_subtract_lemma,
int_formula_prop_not_lemma,
itermSubtract_wf,
intformnot_wf,
subtract_wf,
decidable__le,
false_wf,
int_seg_subtype,
subtype_rel_dep_function,
int_seg_properties,
strong-continuity-test-bound_wf,
isl_wf,
assert_wf,
less_than_irreflexivity,
less_than_transitivity1,
nat_wf,
unit_wf2,
int_seg_wf,
isr_wf,
assert_witness,
less_than_wf,
ge_wf,
int_formula_prop_wf,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_and_lemma,
intformless_wf,
itermVar_wf,
itermConstant_wf,
intformle_wf,
intformand_wf,
satisfiable-full-omega-tt,
nat_properties
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
lambdaFormation,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
independent_functionElimination,
productElimination,
because_Cache,
applyEquality,
functionExtensionality,
cumulativity,
functionEquality,
unionElimination,
dependent_set_memberEquality,
unionEquality,
universeEquality,
equalityTransitivity,
equalitySymmetry,
baseClosed,
baseApply,
closedConclusion,
instantiate,
impliesFunctionality,
imageElimination,
imageMemberEquality
Latex:
\mforall{}[T:Type]. \mforall{}[M:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} T) {}\mrightarrow{} (\mBbbN{}n?)]. \mforall{}[n:\mBbbN{}]. \mforall{}[f:\mBbbN{}n {}\mrightarrow{} T]. \mforall{}[b:\mBbbN{}n].
((\muparrow{}isl(strong-continuity-test-bound(M;n;f;b))) {}\mRightarrow{} (\mforall{}i:\mBbbN{}. (b < i {}\mRightarrow{} i < n {}\mRightarrow{} (\muparrow{}isr(M i f)))))
Date html generated:
2016_05_19-AM-11_59_51
Last ObjectModification:
2016_05_17-PM-04_55_11
Theory : continuity
Home
Index