Nuprl Lemma : strong-continuity-test-bound-prop2

[T:Type]. ∀[M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕn?)]. ∀[n:ℕ]. ∀[f:ℕn ⟶ T]. ∀[b:ℕn].
  ((↑isl(strong-continuity-test-bound(M;n;f;b)))  (∀i:ℕ(b <  i <  (↑isr(M f)))))


Proof




Definitions occuring in Statement :  strong-continuity-test-bound: strong-continuity-test-bound(M;n;f;b) int_seg: {i..j-} nat: assert: b isr: isr(x) isl: isl(x) less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] implies:  Q unit: Unit apply: a function: x:A ⟶ B[x] union: left right natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: le: A ≤ B subtype_rel: A ⊆B guard: {T} int_seg: {i..j-} lelt: i ≤ j < k so_lambda: λ2x.t[x] so_apply: x[s] less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q isl: isl(x) assert: b ifthenelse: if then else fi  bfalse: ff btrue: tt sq_type: SQType(T) uiff: uiff(P;Q) less_than: a < b iff: ⇐⇒ Q rev_implies:  Q squash: T true: True rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  decidable__equal_int true_wf squash_wf set_wf assert_functionality_wrt_uiff decidable__equal_nat not-isl-assert-isr assert_of_lt_int iff_weakening_uiff iff_transitivity assert_of_eq_int lelt_wf decidable__lt assert_of_bnot eqff_to_assert eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases equal-wf-base-T int_formula_prop_eq_lemma intformeq_wf lt_int_wf int_subtype_base equal-wf-base not_wf bnot_wf eq_int_wf int_seg_subtype_nat subtype_rel_union strong-continuity-test-bound-unroll le_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le false_wf int_seg_subtype subtype_rel_dep_function int_seg_properties strong-continuity-test-bound_wf isl_wf assert_wf less_than_irreflexivity less_than_transitivity1 nat_wf unit_wf2 int_seg_wf isr_wf assert_witness less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination productElimination because_Cache applyEquality functionExtensionality cumulativity functionEquality unionElimination dependent_set_memberEquality unionEquality universeEquality equalityTransitivity equalitySymmetry baseClosed baseApply closedConclusion instantiate impliesFunctionality imageElimination imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}n?)].  \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[b:\mBbbN{}n].
    ((\muparrow{}isl(strong-continuity-test-bound(M;n;f;b)))  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}.  (b  <  i  {}\mRightarrow{}  i  <  n  {}\mRightarrow{}  (\muparrow{}isr(M  i  f)))))



Date html generated: 2016_05_19-AM-11_59_51
Last ObjectModification: 2016_05_17-PM-04_55_11

Theory : continuity


Home Index