Nuprl Lemma : exp-equal-one
∀x:ℤ. ∀n:ℕ.  (x^n = 1 ∈ ℤ ⇐⇒ (x = 1 ∈ ℤ) ∨ (n = 0 ∈ ℤ) ∨ ((x = (-1) ∈ ℤ) ∧ ((n mod 2) = 0 ∈ ℤ)))
Proof
Definitions occuring in Statement : 
exp: i^n, 
modulus: a mod n, 
nat: ℕ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
minus: -n, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
decidable: Dec(P), 
sq_type: SQType(T), 
guard: {T}, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
false: False, 
nat_plus: ℕ+, 
le: A ≤ B, 
not: ¬A, 
uiff: uiff(P;Q), 
less_than': less_than'(a;b), 
true: True, 
subtract: n - m, 
cand: A c∧ B, 
squash: ↓T, 
less_than: a < b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
equal-wf-T-base, 
exp_wf2, 
or_wf, 
equal-wf-base, 
modulus_wf_int_mod, 
subtype_rel_set, 
int_mod_wf, 
le_wf, 
int-subtype-int_mod, 
nat_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
nat_properties, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
exp-assoced-one, 
decidable__lt, 
false_wf, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
minus-add, 
minus-zero, 
less_than_wf, 
assoced_weakening, 
assoced_elim, 
subtype_rel-equal, 
intformand_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_term_value_var_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
exp-minusone, 
iff_weakening_equal, 
eq_int_wf, 
bool_cases, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
exp-one, 
exp0_lemma, 
bool_cases_sqequal, 
assert-bnot, 
neg_assert_of_eq_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesisEquality, 
hypothesis, 
baseClosed, 
unionElimination, 
because_Cache, 
productEquality, 
applyEquality, 
sqequalRule, 
natural_numberEquality, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
setElimination, 
rename, 
instantiate, 
cumulativity, 
independent_functionElimination, 
inrFormation, 
inlFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
dependent_set_memberEquality, 
productElimination, 
addEquality, 
minusEquality, 
applyLambdaEquality, 
int_eqEquality, 
imageElimination, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
imageMemberEquality, 
promote_hyp, 
impliesFunctionality, 
equalityElimination
Latex:
\mforall{}x:\mBbbZ{}.  \mforall{}n:\mBbbN{}.    (x\^{}n  =  1  \mLeftarrow{}{}\mRightarrow{}  (x  =  1)  \mvee{}  (n  =  0)  \mvee{}  ((x  =  (-1))  \mwedge{}  ((n  mod  2)  =  0)))
Date html generated:
2018_05_21-PM-01_06_14
Last ObjectModification:
2018_01_28-PM-02_02_12
Theory : num_thy_1
Home
Index