Nuprl Lemma : fast-fib

n:ℕ(∃m:ℕ [(m fib(n) ∈ ℕ)])


Proof




Definitions occuring in Statement :  fib: fib(n) nat: all: x:A. B[x] sq_exists: x:A [B[x]] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) guard: {T} prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff so_apply: x[s] sq_exists: x:A [B[x]] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] le_int: i ≤j lt_int: i <j bnot: ¬bb le: A ≤ B less_than': less_than'(a;b) nequal: a ≠ b ∈  int_upper: {i...} fib: fib(n) assert: b bor: p ∨bq subtract: m squash: T true: True eq_int: (i =z j) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base all_wf int_seg_wf sq_exists_wf nat_wf equal-wf-base-T fib_wf nat_properties int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf le_int_wf bool_wf eqtt_to_assert assert_of_le_int equal_wf natrec_wf zero-add set-value-type int-value-type subtract_wf intformeq_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf upper_subtype_nat false_wf nequal-le-implies int_upper_properties eq_int_wf assert_of_eq_int testxxx_lemma eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int add-associates add-swap add-commutes squash_wf true_wf assert_wf bnot_wf not_wf add-zero bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination setElimination rename hypothesisEquality hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination sqequalRule lambdaEquality functionEquality applyEquality dependent_set_memberEquality addEquality productElimination approximateComputation dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation equalityElimination equalityTransitivity equalitySymmetry functionExtensionality cutEval hypothesis_subsumption promote_hyp imageElimination imageMemberEquality baseClosed applyLambdaEquality impliesFunctionality

Latex:
\mforall{}n:\mBbbN{}.  (\mexists{}m:\mBbbN{}  [(m  =  fib(n))])



Date html generated: 2018_05_21-PM-00_56_13
Last ObjectModification: 2018_05_19-AM-06_34_43

Theory : num_thy_1


Home Index