Nuprl Lemma : nth-better-fibs

n:ℕ(s-nth(n;better-fibs()) fib(n) ∈ ℤ)


Proof




Definitions occuring in Statement :  better-fibs: better-fibs() fib: fib(n) s-nth: s-nth(n;s) nat: all: x:A. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] better-fibs: better-fibs() uall: [x:A]. B[x] member: t ∈ T top: Top has-value: (a)↓ uimplies: supposing a nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B fib: fib(n) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt bor: p ∨bq bfalse: ff s-nth: s-nth(n;s) mk-stream: mk-stream(f;x) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  pi1: fst(t) callbyvalueall: callbyvalueall has-valueall: has-valueall(a)
Lemmas referenced :  nth-stream-map nat_wf mk-stream_wf value-type-has-value int-value-type nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf false_wf product-valueall-type set-valueall-type int-valueall-type stream-subtype top_wf testxxx_lemma intformless_wf int_formula_prop_less_lemma ge_wf less_than_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int fib_wf squash_wf true_wf add-zero add-commutes add-associates zero-add not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-swap add_functionality_wrt_le le-add-cancel eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma product_subtype_base int_subtype_base set_subtype_base decidable__equal_int valueall-type-has-valueall evalall-reduce iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesisEquality hypothesis productEquality because_Cache lambdaEquality productElimination callbyvalueReduce intEquality independent_isectElimination addEquality setElimination rename independent_pairEquality dependent_set_memberEquality dependent_functionElimination natural_numberEquality unionElimination dependent_pairFormation int_eqEquality independent_pairFormation computeAll independent_functionElimination applyEquality intWeakElimination axiomEquality equalityElimination sqleReflexivity imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed minusEquality promote_hyp instantiate cumulativity universeEquality

Latex:
\mforall{}n:\mBbbN{}.  (s-nth(n;better-fibs())  =  fib(n))



Date html generated: 2017_04_17-AM-09_49_23
Last ObjectModification: 2017_02_27-PM-05_45_45

Theory : num_thy_1


Home Index