Nuprl Lemma : satisfiable-elim-eq-constraints
∀eqs,ineqs:ℤ List List. ∀xs:ℤ List.
  (satisfies-integer-problem(eqs;ineqs;xs)
  
⇒ satisfies-integer-problem([];(eager-map(λeq.eager-map(λx.(-x);eq);eqs) @ eqs) @ ineqs;xs))
Proof
Definitions occuring in Statement : 
satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs)
, 
eager-map: eager-map(f;as)
, 
append: as @ bs
, 
nil: []
, 
list: T List
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
minus: -n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs)
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than: a < b
, 
subtype_rel: A ⊆r B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
subtract: n - m
, 
sq_type: SQType(T)
, 
guard: {T}
, 
satisfies-integer-equality: xs ⋅ as =0
, 
satisfies-integer-inequality: xs ⋅ as ≥0
, 
int-vec-mul: a * as
, 
true: True
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
ge: i ≥ j 
Lemmas referenced : 
l_all_nil, 
satisfies-integer-problem_wf, 
list_wf, 
list-value-type, 
eager-map_wf, 
int-value-type, 
l_all_append, 
satisfies-integer-inequality_wf, 
append_wf, 
map_wf, 
map-length, 
length_wf_nat, 
and_wf, 
equal_wf, 
nat_wf, 
less_than_wf, 
lelt_wf, 
length_wf, 
int_seg_wf, 
eager-map-is-map, 
select-map, 
subtype_rel_list, 
top_wf, 
select_wf, 
sq_stable__le, 
non_neg_length, 
map_length, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
subtract_wf, 
minus-one-mul, 
add-swap, 
add-commutes, 
add-associates, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
zero-add, 
one-mul, 
subtype_base_sq, 
int_seg_properties, 
nat_properties, 
length-map, 
list_subtype_base, 
minus-one-mul-top, 
squash_wf, 
true_wf, 
int-dot-mul-left, 
zero_ann_a, 
decidable__equal_int, 
integer-dot-product_wf, 
false_wf, 
not-equal-2, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
condition-implies-le, 
minus-add, 
minus-zero, 
or_wf, 
iff_weakening_equal, 
le_reflexive, 
equal-wf-base, 
le_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
hypothesisEquality, 
intEquality, 
because_Cache, 
lambdaEquality, 
independent_isectElimination, 
minusEquality, 
dependent_functionElimination, 
independent_functionElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
addLevel, 
hyp_replacement, 
equalitySymmetry, 
equalityTransitivity, 
applyLambdaEquality, 
levelHypothesis, 
natural_numberEquality, 
applyEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
promote_hyp, 
addEquality, 
multiplyEquality, 
instantiate, 
cumulativity, 
functionExtensionality, 
functionEquality, 
universeEquality, 
unionElimination, 
inlFormation, 
inrFormation, 
orFunctionality, 
baseApply, 
closedConclusion
Latex:
\mforall{}eqs,ineqs:\mBbbZ{}  List  List.  \mforall{}xs:\mBbbZ{}  List.
    (satisfies-integer-problem(eqs;ineqs;xs)
    {}\mRightarrow{}  satisfies-integer-problem([];(eager-map(\mlambda{}eq.eager-map(\mlambda{}x.(-x);eq);eqs)  @  eqs)  @  ineqs;xs))
Date html generated:
2017_04_14-AM-09_05_38
Last ObjectModification:
2017_02_27-PM-03_45_15
Theory : omega
Home
Index