Nuprl Lemma : satisfiable-elim-eq-constraints

eqs,ineqs:ℤ List List. ∀xs:ℤ List.
  (satisfies-integer-problem(eqs;ineqs;xs)
   satisfies-integer-problem([];(eager-map(λeq.eager-map(λx.(-x);eq);eqs) eqs) ineqs;xs))


Proof




Definitions occuring in Statement :  satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs) eager-map: eager-map(f;as) append: as bs nil: [] list: List all: x:A. B[x] implies:  Q lambda: λx.A[x] minus: -n int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs) and: P ∧ Q uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T top: Top so_apply: x[s] prop: uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k nat: le: A ≤ B less_than: a < b subtype_rel: A ⊆B sq_stable: SqStable(P) squash: T exists: x:A. B[x] subtract: m sq_type: SQType(T) guard: {T} satisfies-integer-equality: xs ⋅ as =0 satisfies-integer-inequality: xs ⋅ as ≥0 int-vec-mul: as true: True decidable: Dec(P) or: P ∨ Q not: ¬A false: False uiff: uiff(P;Q) less_than': less_than'(a;b) ge: i ≥ 
Lemmas referenced :  l_all_nil satisfies-integer-problem_wf list_wf list-value-type eager-map_wf int-value-type l_all_append satisfies-integer-inequality_wf append_wf map_wf map-length length_wf_nat and_wf equal_wf nat_wf less_than_wf lelt_wf length_wf int_seg_wf eager-map-is-map select-map subtype_rel_list top_wf select_wf sq_stable__le non_neg_length map_length set_subtype_base le_wf int_subtype_base subtract_wf minus-one-mul add-swap add-commutes add-associates add-mul-special two-mul mul-distributes-right zero-mul zero-add one-mul subtype_base_sq int_seg_properties nat_properties length-map list_subtype_base minus-one-mul-top squash_wf true_wf int-dot-mul-left zero_ann_a decidable__equal_int integer-dot-product_wf false_wf not-equal-2 le_antisymmetry_iff add_functionality_wrt_le add-zero le-add-cancel condition-implies-le minus-add minus-zero or_wf iff_weakening_equal le_reflexive equal-wf-base le_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin independent_pairFormation cut introduction extract_by_obid isectElimination sqequalRule isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality intEquality because_Cache lambdaEquality independent_isectElimination minusEquality dependent_functionElimination independent_functionElimination setElimination rename dependent_set_memberEquality addLevel hyp_replacement equalitySymmetry equalityTransitivity applyLambdaEquality levelHypothesis natural_numberEquality applyEquality imageMemberEquality baseClosed imageElimination dependent_pairFormation sqequalIntensionalEquality promote_hyp addEquality multiplyEquality instantiate cumulativity functionExtensionality functionEquality universeEquality unionElimination inlFormation inrFormation orFunctionality baseApply closedConclusion

Latex:
\mforall{}eqs,ineqs:\mBbbZ{}  List  List.  \mforall{}xs:\mBbbZ{}  List.
    (satisfies-integer-problem(eqs;ineqs;xs)
    {}\mRightarrow{}  satisfies-integer-problem([];(eager-map(\mlambda{}eq.eager-map(\mlambda{}x.(-x);eq);eqs)  @  eqs)  @  ineqs;xs))



Date html generated: 2017_04_14-AM-09_05_38
Last ObjectModification: 2017_02_27-PM-03_45_15

Theory : omega


Home Index