Nuprl Lemma : Cn-comb_wf

[T:Type]. ∀[n,m:ℕ]. ∀[A:ℕm ⟶ Type].
  Cn-comb(n) ∈ funtype(m;A;T) ⟶ funtype(m;λk.if k <then (k 1)
                                              if (k =z n) then 0
                                              else k
                                              fi ;T) 
  supposing n < m


Proof




Definitions occuring in Statement :  Cn-comb: Cn-comb(n) funtype: funtype(n;A;T) int_seg: {i..j-} nat: ifthenelse: if then else fi  lt_int: i <j eq_int: (i =z j) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T apply: a lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  Cn-comb: Cn-comb(n) uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: lt_int: i <j bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff guard: {T} subtract: m le: A ≤ B less_than': less_than'(a;b) true: True subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q less_than: a < b squash: T decidable: Dec(P) nequal: a ≠ b ∈  eq_int: (i =z j) funtype: funtype(n;A;T) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than primrec-unroll btrue_wf uiff_transitivity equal-wf-base bool_wf assert_wf lt_int_wf less_than_wf eqtt_to_assert assert_of_lt_int le_int_wf le_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int int_seg_wf subtract-1-ge-0 int_subtype_base istype-nat istype-universe funtype_wf subtype_rel-equal add-member-int_seg2 bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot iff_weakening_uiff eq_int_wf assert_of_eq_int int_seg_properties decidable__le intformnot_wf int_formula_prop_not_lemma decidable__lt intformeq_wf int_formula_prop_eq_lemma istype-le neg_assert_of_eq_int decidable__equal_int istype-false C-comb_wf_funtype subtract_wf itermSubtract_wf int_term_value_subtract_lemma not_wf bool_cases iff_transitivity assert_of_bnot set_subtype_base primrec_wf lelt_wf squash_wf true_wf nat_wf itermAdd_wf int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation universeIsType axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType because_Cache unionElimination equalityElimination baseClosed productElimination equalityIstype functionIsType baseApply closedConclusion applyEquality instantiate universeEquality dependent_set_memberEquality_alt promote_hyp cumulativity imageElimination productIsType functionExtensionality_alt intEquality imageMemberEquality equalityIsType1 equalityIsType4 functionEquality addEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[A:\mBbbN{}m  {}\mrightarrow{}  Type].
    Cn-comb(n)  \mmember{}  funtype(m;A;T)  {}\mrightarrow{}  funtype(m;\mlambda{}k.if  k  <z  n  then  A  (k  +  1)
                                                                                            if  (k  =\msubz{}  n)  then  A  0
                                                                                            else  A  k
                                                                                            fi  ;T) 
    supposing  n  <  m



Date html generated: 2019_10_15-AM-11_15_09
Last ObjectModification: 2019_06_25-PM-01_22_26

Theory : general


Home Index