Nuprl Lemma : urec_induction

[F:Type ⟶ Type]
  (destructor{i:l}(T.F[T])
      (∀[P:urec(F) ⟶ ℙ]
           ((∀[T:Type]. ((∀x:T ⋂ urec(F). P[x])  (∀x:F T ⋂ urec(F). P[x])))  (∀x:urec(F). P[x])))) supposing 
     ((∀T:Type. ((T ⊆Base)  ((F T) ⊆Base))) and 
     Monotone(T.F[T]))


Proof




Definitions occuring in Statement :  destructor: destructor{i:l}(T.F[T]) urec: urec(F) type-monotone: Monotone(T.F[T]) isect2: T1 ⋂ T2 uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T type-monotone: Monotone(T.F[T]) subtype_rel: A ⊆B all: x:A. B[x] implies:  Q so_apply: x[s] prop: so_lambda: λ2x.t[x] le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A nat: top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) lelt: i ≤ j < k int_seg: {i..j-} guard: {T} tunion: x:A.B[x] isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff union-continuous: union-continuous{i:l}(T.F[T]) ext-eq: A ≡ B pi2: snd(t) decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) nat_plus: + iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) true: True subtract: m rev_uimplies: rev_uimplies(P;Q) ge: i ≥ 
Lemmas referenced :  urec_wf istype-universe isect2_wf isect2_subtype_rel2 subtype_rel_self destructor_wf subtype_rel_wf base_wf type-monotone_wf tunion_wf int_seg_wf subtract_wf fun_exp_wf int_seg_subtype_nat istype-false istype-int istype-less_than primrec-wf2 all_wf istype-nat isect2_subtype_rel int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma istype-void int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat int_seg_properties bool_wf subtype_rel_transitivity type-monotone-union-continuous decidable__equal_int subtype_base_sq int_subtype_base fun_exp0_lemma decidable__le intformnot_wf itermSubtract_wf intformeq_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma decidable__lt istype-le subtype_rel-equal fun_exp_add1_sub not-lt-2 not-equal-2 add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero add-member-int_seg2 itermAdd_wf int_term_value_add_lemma fun_exp_apply_add1 subtype_rel_functionality_wrt_iff ext-eq_weakening urec-level-property le_wf nat_properties urec-level_wf void_wf less_than_wf urec_subtype_base base-member-prop
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction sqequalRule sqequalHypSubstitution isect_memberEquality_alt isectElimination thin hypothesisEquality axiomEquality hypothesis isectIsTypeImplies inhabitedIsType rename lambdaEquality_alt dependent_functionElimination functionIsTypeImplies lambdaFormation_alt universeIsType extract_by_obid isectIsType instantiate universeEquality functionIsType applyEquality because_Cache setElimination closedConclusion natural_numberEquality independent_isectElimination independent_pairFormation voidEquality setIsType independent_functionElimination equalitySymmetry equalityTransitivity equalityIsType1 voidElimination int_eqEquality dependent_pairFormation_alt approximateComputation productElimination imageElimination isect_memberEquality unionElimination equalityElimination cumulativity intEquality imageMemberEquality dependent_pairEquality_alt dependent_set_memberEquality_alt productIsType addEquality minusEquality baseClosed applyLambdaEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type]
    (destructor\{i:l\}(T.F[T])
          {}\mRightarrow{}  (\mforall{}[P:urec(F)  {}\mrightarrow{}  \mBbbP{}]
                      ((\mforall{}[T:Type].  ((\mforall{}x:T  \mcap{}  urec(F).  P[x])  {}\mRightarrow{}  (\mforall{}x:F  T  \mcap{}  urec(F).  P[x])))
                      {}\mRightarrow{}  (\mforall{}x:urec(F).  P[x]))))  supposing 
          ((\mforall{}T:Type.  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  ((F  T)  \msubseteq{}r  Base)))  and 
          Monotone(T.F[T]))



Date html generated: 2019_10_15-AM-11_31_53
Last ObjectModification: 2018_10_31-PM-02_25_57

Theory : general


Home Index