Nuprl Lemma : urec_induction
∀[F:Type ⟶ Type]
  (destructor{i:l}(T.F[T])
     
⇒ (∀[P:urec(F) ⟶ ℙ]
           ((∀[T:Type]. ((∀x:T ⋂ urec(F). P[x]) 
⇒ (∀x:F T ⋂ urec(F). P[x]))) 
⇒ (∀x:urec(F). P[x])))) supposing 
     ((∀T:Type. ((T ⊆r Base) 
⇒ ((F T) ⊆r Base))) and 
     Monotone(T.F[T]))
Proof
Definitions occuring in Statement : 
destructor: destructor{i:l}(T.F[T])
, 
urec: urec(F)
, 
type-monotone: Monotone(T.F[T])
, 
isect2: T1 ⋂ T2
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
type-monotone: Monotone(T.F[T])
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
nat: ℕ
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
guard: {T}
, 
tunion: ⋃x:A.B[x]
, 
isect2: T1 ⋂ T2
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
union-continuous: union-continuous{i:l}(T.F[T])
, 
ext-eq: A ≡ B
, 
pi2: snd(t)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
nat_plus: ℕ+
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
true: True
, 
subtract: n - m
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ge: i ≥ j 
Lemmas referenced : 
urec_wf, 
istype-universe, 
isect2_wf, 
isect2_subtype_rel2, 
subtype_rel_self, 
destructor_wf, 
subtype_rel_wf, 
base_wf, 
type-monotone_wf, 
tunion_wf, 
int_seg_wf, 
subtract_wf, 
fun_exp_wf, 
int_seg_subtype_nat, 
istype-false, 
istype-int, 
istype-less_than, 
primrec-wf2, 
all_wf, 
istype-nat, 
isect2_subtype_rel, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
full-omega-unsat, 
int_seg_properties, 
bool_wf, 
subtype_rel_transitivity, 
type-monotone-union-continuous, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
fun_exp0_lemma, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
decidable__lt, 
istype-le, 
subtype_rel-equal, 
fun_exp_add1_sub, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
minus-add, 
minus-zero, 
add-member-int_seg2, 
itermAdd_wf, 
int_term_value_add_lemma, 
fun_exp_apply_add1, 
subtype_rel_functionality_wrt_iff, 
ext-eq_weakening, 
urec-level-property, 
le_wf, 
nat_properties, 
urec-level_wf, 
void_wf, 
less_than_wf, 
urec_subtype_base, 
base-member-prop
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
isectIsTypeImplies, 
inhabitedIsType, 
rename, 
lambdaEquality_alt, 
dependent_functionElimination, 
functionIsTypeImplies, 
lambdaFormation_alt, 
universeIsType, 
extract_by_obid, 
isectIsType, 
instantiate, 
universeEquality, 
functionIsType, 
applyEquality, 
because_Cache, 
setElimination, 
closedConclusion, 
natural_numberEquality, 
independent_isectElimination, 
independent_pairFormation, 
voidEquality, 
setIsType, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityIsType1, 
voidElimination, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
productElimination, 
imageElimination, 
isect_memberEquality, 
unionElimination, 
equalityElimination, 
cumulativity, 
intEquality, 
imageMemberEquality, 
dependent_pairEquality_alt, 
dependent_set_memberEquality_alt, 
productIsType, 
addEquality, 
minusEquality, 
baseClosed, 
applyLambdaEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type]
    (destructor\{i:l\}(T.F[T])
          {}\mRightarrow{}  (\mforall{}[P:urec(F)  {}\mrightarrow{}  \mBbbP{}]
                      ((\mforall{}[T:Type].  ((\mforall{}x:T  \mcap{}  urec(F).  P[x])  {}\mRightarrow{}  (\mforall{}x:F  T  \mcap{}  urec(F).  P[x])))
                      {}\mRightarrow{}  (\mforall{}x:urec(F).  P[x]))))  supposing 
          ((\mforall{}T:Type.  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  ((F  T)  \msubseteq{}r  Base)))  and 
          Monotone(T.F[T]))
Date html generated:
2019_10_15-AM-11_31_53
Last ObjectModification:
2018_10_31-PM-02_25_57
Theory : general
Home
Index