Nuprl Lemma : fset-ac-le-face-lattice0
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[i:T]. ∀[s:fset(fset(T + T))].
  (fset-all(s;x.inl i ∈b x) 
⇐⇒ fset-ac-le(union-deq(T;T;eq;eq);s;(i=0)))
Proof
Definitions occuring in Statement : 
face-lattice0: (x=0)
, 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
fset-all: fset-all(s;x.P[x])
, 
deq-fset-member: a ∈b s
, 
fset: fset(T)
, 
union-deq: union-deq(A;B;a;b)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
inl: inl x
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
fset-all: fset-all(s;x.P[x])
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
rev_uimplies: rev_uimplies(P;Q)
, 
not: ¬A
, 
false: False
, 
fset-member: a ∈ s
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
deq-member: x ∈b L
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
bfalse: ff
, 
face-lattice0: (x=0)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
cand: A c∧ B
, 
deq-fset-member: a ∈b s
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
sq_stable: SqStable(P)
, 
f-subset: xs ⊆ ys
Lemmas referenced : 
fl-point-sq, 
fset_wf, 
assert_wf, 
fset-antichain_wf, 
union-deq_wf, 
fset-all_wf, 
fset-contains-none_wf, 
face-lattice-constraints_wf, 
assert_witness, 
fset-null_wf, 
fset-filter_wf, 
bnot_wf, 
deq-f-subset_wf, 
face-lattice0_wf, 
deq-fset-member_wf, 
fset-ac-le_wf, 
deq_wf, 
fset-all-iff, 
deq-fset_wf, 
iff_weakening_uiff, 
uall_wf, 
isect_wf, 
fset-member_wf, 
assert_of_bnot, 
assert-fset-null, 
not_wf, 
equal-wf-T-base, 
fset-singleton_wf, 
equal_wf, 
member-fset-filter, 
bool_wf, 
all_wf, 
iff_wf, 
f-subset_wf, 
member-fset-singleton, 
assert-deq-f-subset, 
f-singleton-subset, 
fset-ac-le-implies2, 
sq_stable__assert, 
assert-deq-fset-member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
lambdaEquality, 
setElimination, 
rename, 
hypothesisEquality, 
setEquality, 
unionEquality, 
productEquality, 
independent_pairFormation, 
lambdaFormation, 
cumulativity, 
because_Cache, 
applyEquality, 
independent_functionElimination, 
inlEquality, 
universeEquality, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
impliesFunctionality, 
baseClosed, 
hyp_replacement, 
applyLambdaEquality, 
dependent_functionElimination, 
functionEquality, 
imageElimination, 
imageMemberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[i:T].  \mforall{}[s:fset(fset(T  +  T))].
    (fset-all(s;x.inl  i  \mmember{}\msubb{}  x)  \mLeftarrow{}{}\mRightarrow{}  fset-ac-le(union-deq(T;T;eq;eq);s;(i=0)))
Date html generated:
2020_05_20-AM-08_52_29
Last ObjectModification:
2018_05_20-PM-10_12_47
Theory : lattices
Home
Index