Nuprl Lemma : rng_lsum-partition
∀[k:ℕ]. ∀[A:Type]. ∀[p:A ⟶ ℕk]. ∀[r:Rng]. ∀[f:A ⟶ |r|]. ∀[as:A List].
  (Σ{r} x ∈ as. f[x] = (Σ(r) 0 ≤ i < k. Σ{r} x ∈ filter(λa.(p a =z i);as). f[x]) ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_lsum: Σ{r} x ∈ as. f[x]
, 
filter: filter(P;l)
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
eq_int: (i =z j)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng_sum: rng_sum, 
rng: Rng
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
rng: Rng
, 
so_apply: x[s]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
top: Top
, 
squash: ↓T
, 
infix_ap: x f y
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
true: True
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
list_induction, 
equal_wf, 
rng_car_wf, 
rng_lsum_wf, 
rng_sum_wf, 
filter_wf5, 
eq_int_wf, 
int_seg_wf, 
l_member_wf, 
list_wf, 
rng_lsum_nil_lemma, 
filter_nil_lemma, 
rng_lsum_cons_lemma, 
filter_cons_lemma, 
rng_plus_wf, 
ifthenelse_wf, 
cons_wf, 
iff_weakening_equal, 
rng_wf, 
nat_wf, 
rng_zero_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rng_sum_0, 
decidable__lt, 
int_seg_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_subtype_nat, 
false_wf, 
ge_wf, 
less_than_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
squash_wf, 
true_wf, 
rng_sum_unroll_lo, 
subtype_rel_self, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
rng_plus_zero, 
rng_sum_shift, 
rng_sum_unroll_hi, 
itermAdd_wf, 
int_term_value_add_lemma, 
add-subtract-cancel, 
decidable__equal_int, 
rng_plus_comm, 
rng_sum_plus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
hypothesis, 
applyEquality, 
natural_numberEquality, 
setEquality, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
axiomEquality, 
functionEquality, 
universeEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
applyLambdaEquality, 
intWeakElimination, 
instantiate, 
equalityElimination, 
promote_hyp, 
cumulativity, 
hyp_replacement, 
addEquality, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[A:Type].  \mforall{}[p:A  {}\mrightarrow{}  \mBbbN{}k].  \mforall{}[r:Rng].  \mforall{}[f:A  {}\mrightarrow{}  |r|].  \mforall{}[as:A  List].
    (\mSigma{}\{r\}  x  \mmember{}  as.  f[x]  =  (\mSigma{}(r)  0  \mleq{}  i  <  k.  \mSigma{}\{r\}  x  \mmember{}  filter(\mlambda{}a.(p  a  =\msubz{}  i);as).  f[x]))
Date html generated:
2018_05_21-PM-09_33_07
Last ObjectModification:
2018_05_19-PM-04_22_03
Theory : matrices
Home
Index