Nuprl Lemma : rng_lsum-partition

[k:ℕ]. ∀[A:Type]. ∀[p:A ⟶ ℕk]. ∀[r:Rng]. ∀[f:A ⟶ |r|]. ∀[as:A List].
  {r} x ∈ as. f[x] (r) 0 ≤ i < k. Σ{r} x ∈ filter(λa.(p =z i);as). f[x]) ∈ |r|)


Proof




Definitions occuring in Statement :  rng_lsum: Σ{r} x ∈ as. f[x] filter: filter(P;l) list: List int_seg: {i..j-} nat: eq_int: (i =z j) uall: [x:A]. B[x] so_apply: x[s] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T rng_sum: rng_sum rng: Rng rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] rng: Rng so_apply: x[s] nat: subtype_rel: A ⊆B int_seg: {i..j-} prop: implies:  Q all: x:A. B[x] top: Top squash: T infix_ap: y uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False true: True lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  list_induction equal_wf rng_car_wf rng_lsum_wf rng_sum_wf filter_wf5 eq_int_wf int_seg_wf l_member_wf list_wf rng_lsum_nil_lemma filter_nil_lemma rng_lsum_cons_lemma filter_cons_lemma rng_plus_wf ifthenelse_wf cons_wf iff_weakening_equal rng_wf nat_wf rng_zero_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rng_sum_0 decidable__lt int_seg_properties intformless_wf int_formula_prop_less_lemma int_seg_subtype_nat false_wf ge_wf less_than_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma squash_wf true_wf rng_sum_unroll_lo subtype_rel_self bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int rng_plus_zero rng_sum_shift rng_sum_unroll_hi itermAdd_wf int_term_value_add_lemma add-subtract-cancel decidable__equal_int rng_plus_comm rng_sum_plus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality setElimination rename hypothesis applyEquality natural_numberEquality setEquality because_Cache independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation imageElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_isectElimination productElimination axiomEquality functionEquality universeEquality unionElimination approximateComputation dependent_pairFormation int_eqEquality intEquality independent_pairFormation applyLambdaEquality intWeakElimination instantiate equalityElimination promote_hyp cumulativity hyp_replacement addEquality equalityUniverse levelHypothesis

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[A:Type].  \mforall{}[p:A  {}\mrightarrow{}  \mBbbN{}k].  \mforall{}[r:Rng].  \mforall{}[f:A  {}\mrightarrow{}  |r|].  \mforall{}[as:A  List].
    (\mSigma{}\{r\}  x  \mmember{}  as.  f[x]  =  (\mSigma{}(r)  0  \mleq{}  i  <  k.  \mSigma{}\{r\}  x  \mmember{}  filter(\mlambda{}a.(p  a  =\msubz{}  i);as).  f[x]))



Date html generated: 2018_05_21-PM-09_33_07
Last ObjectModification: 2018_05_19-PM-04_22_03

Theory : matrices


Home Index