Nuprl Lemma : fps-pascal-elim

[r:CRng]. ∀[x,y:Atom].  Δ(x,y)(x:=0) (1÷(1-atom(y))) ∈ PowerSeries(r) supposing (x y ∈ Atom)) ∧ (1 0 ∈ |r|))


Proof




Definitions occuring in Statement :  fps-pascal: Δ(x,y) fps-elim-x: f(x:=0) fps-div: (f÷g) fps-sub: (f-g) fps-atom: atom(x) fps-one: 1 power-series: PowerSeries(X;r) atom-deq: AtomDeq uimplies: supposing a uall: [x:A]. B[x] not: ¬A and: P ∧ Q atom: Atom equal: t ∈ T crng: CRng rng_one: 1 rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q fps-pascal: Δ(x,y) fps-elim-x: f(x:=0) fps-atom: atom(x) squash: T prop: crng: CRng rng: Rng cand: c∧ B subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q true: True all: x:A. B[x] top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  not: ¬A false: False bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b fps-sub: (f-g) empty-bag: {} fps-add: (f+g) fps-one: 1 fps-coeff: f[b] infix_ap: y single-bag: {x} fps-single: <c> fps-neg: -(f) bag-eq: bag-eq(eq;as;bs) bag-null: bag-null(bs) null: null(as) nil: [] bag-count: (#x in bs) bag-all: bag-all(x.p[x];bs) count: count(P;L) bag-map: bag-map(f;bs) bag-reduce: bag-reduce(x,y.f[x; y];zero;bs) lt_int: i <j band: p ∧b q atom-deq: AtomDeq rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  equal_wf squash_wf true_wf power-series_wf fps-elim-div atom-valueall-type atom-deq_wf fps-one_wf fps-sub_wf fps-add_wf fps-atom_wf rng_one_wf fps-div_wf iff_weakening_equal not_wf equal-wf-base atom_subtype_base rng_car_wf rng_zero_wf crng_wf fps-zero_wf atomdeq_reduce_lemma eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom fps-neg_wf fps-elim-x-one fps-elim-x-sub fps-elim-x-add fps-elim-x-atom neg_thru_op_fps abmonoid_ac_1_fps abmonoid_comm_fps fps-non-trivial rng_minus_wf rng_plus_wf infix_ap_wf rng_times_wf reduce_nil_lemma reduce_cons_lemma map_nil_lemma map_cons_lemma rng_times_over_plus rng_times_over_minus rng_times_zero rng_times_one rng_minus_over_plus rng_minus_zero rng_plus_zero valueall-type_wf deq_wf neg_id_fps mon_ident_fps
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin applyEquality lambdaEquality imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality because_Cache independent_isectElimination atomEquality setElimination rename independent_pairFormation sqequalRule imageMemberEquality baseClosed independent_functionElimination productEquality isect_memberEquality axiomEquality natural_numberEquality dependent_functionElimination voidElimination voidEquality lambdaFormation unionElimination equalityElimination dependent_pairFormation promote_hyp instantiate cumulativity

Latex:
\mforall{}[r:CRng].  \mforall{}[x,y:Atom].    \mDelta{}(x,y)(x:=0)  =  (1\mdiv{}(1-atom(y)))  supposing  (\mneg{}(x  =  y))  \mwedge{}  (\mneg{}(1  =  0))



Date html generated: 2018_05_21-PM-10_12_00
Last ObjectModification: 2017_07_26-PM-06_34_51

Theory : power!series


Home Index