Nuprl Lemma : fps-pascal-elim
∀[r:CRng]. ∀[x,y:Atom].  Δ(x,y)(x:=0) = (1÷(1-atom(y))) ∈ PowerSeries(r) supposing (¬(x = y ∈ Atom)) ∧ (¬(1 = 0 ∈ |r|))
Proof
Definitions occuring in Statement : 
fps-pascal: Δ(x,y)
, 
fps-elim-x: f(x:=0)
, 
fps-div: (f÷g)
, 
fps-sub: (f-g)
, 
fps-atom: atom(x)
, 
fps-one: 1
, 
power-series: PowerSeries(X;r)
, 
atom-deq: AtomDeq
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
atom: Atom
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_one: 1
, 
rng_zero: 0
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
fps-pascal: Δ(x,y)
, 
fps-elim-x: f(x:=0)
, 
fps-atom: atom(x)
, 
squash: ↓T
, 
prop: ℙ
, 
crng: CRng
, 
rng: Rng
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
true: True
, 
all: ∀x:A. B[x]
, 
top: Top
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
not: ¬A
, 
false: False
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
fps-sub: (f-g)
, 
empty-bag: {}
, 
fps-add: (f+g)
, 
fps-one: 1
, 
fps-coeff: f[b]
, 
infix_ap: x f y
, 
single-bag: {x}
, 
fps-single: <c>
, 
fps-neg: -(f)
, 
bag-eq: bag-eq(eq;as;bs)
, 
bag-null: bag-null(bs)
, 
null: null(as)
, 
nil: []
, 
bag-count: (#x in bs)
, 
bag-all: bag-all(x.p[x];bs)
, 
count: count(P;L)
, 
bag-map: bag-map(f;bs)
, 
bag-reduce: bag-reduce(x,y.f[x; y];zero;bs)
, 
lt_int: i <z j
, 
band: p ∧b q
, 
atom-deq: AtomDeq
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
power-series_wf, 
fps-elim-div, 
atom-valueall-type, 
atom-deq_wf, 
fps-one_wf, 
fps-sub_wf, 
fps-add_wf, 
fps-atom_wf, 
rng_one_wf, 
fps-div_wf, 
iff_weakening_equal, 
not_wf, 
equal-wf-base, 
atom_subtype_base, 
rng_car_wf, 
rng_zero_wf, 
crng_wf, 
fps-zero_wf, 
atomdeq_reduce_lemma, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
fps-neg_wf, 
fps-elim-x-one, 
fps-elim-x-sub, 
fps-elim-x-add, 
fps-elim-x-atom, 
neg_thru_op_fps, 
abmonoid_ac_1_fps, 
abmonoid_comm_fps, 
fps-non-trivial, 
rng_minus_wf, 
rng_plus_wf, 
infix_ap_wf, 
rng_times_wf, 
reduce_nil_lemma, 
reduce_cons_lemma, 
map_nil_lemma, 
map_cons_lemma, 
rng_times_over_plus, 
rng_times_over_minus, 
rng_times_zero, 
rng_times_one, 
rng_minus_over_plus, 
rng_minus_zero, 
rng_plus_zero, 
valueall-type_wf, 
deq_wf, 
neg_id_fps, 
mon_ident_fps
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
applyEquality, 
lambdaEquality, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
atomEquality, 
setElimination, 
rename, 
independent_pairFormation, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
productEquality, 
isect_memberEquality, 
axiomEquality, 
natural_numberEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}[r:CRng].  \mforall{}[x,y:Atom].    \mDelta{}(x,y)(x:=0)  =  (1\mdiv{}(1-atom(y)))  supposing  (\mneg{}(x  =  y))  \mwedge{}  (\mneg{}(1  =  0))
Date html generated:
2018_05_21-PM-10_12_00
Last ObjectModification:
2017_07_26-PM-06_34_51
Theory : power!series
Home
Index