Nuprl Lemma : qle-mk-rational

[a,c:ℤ]. ∀[b,d:ℕ+].  uiff(mk-rational(a;b) ≤ mk-rational(c;d);(a d) ≤ (b c))


Proof




Definitions occuring in Statement :  qle: r ≤ s mk-rational: mk-rational(a;b) nat_plus: + uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B multiply: m int:
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q band: p ∧b q guard: {T} sq_type: SQType(T) false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) prop: nequal: a ≠ b ∈  int_nzero: -o bfalse: ff btrue: tt ifthenelse: if then else fi  top: Top has-valueall: has-valueall(a) has-value: (a)↓ callbyvalueall: callbyvalueall nat_plus: + all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] qsub: s q_le: q_le(r;s) infix_ap: y pi1: fst(t) pi2: snd(t) grp_le: b qadd_grp: <ℚ+> grp_leq: a ≤ b qle: r ≤ s implies:  Q le: A ≤ B uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T mk-rational: mk-rational(a;b)
Lemmas referenced :  assert_witness assert_of_eq_int istype-assert assert_of_band assert_of_bor iff_weakening_uiff int_subtype_base set_subtype_base equal-wf-base eq_int_wf bfalse_wf assert_of_lt_int btrue_wf band_wf eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases lt_int_wf bor_wf assert_wf iff_transitivity decidable__equal_int int_formula_prop_eq_lemma int_formula_prop_or_lemma intformeq_wf intformor_wf istype-le istype-less_than int_term_value_add_lemma int_term_value_constant_lemma itermAdd_wf itermConstant_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermMultiply_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_plus_properties decidable__lt mul_bounds_1b qeq-elim nequal_wf mul_nzero qpositive-elim istype-void isint-int qadd-elim int-subtype-rationals qmul-elim evalall-reduce less_than_wf set-valueall-type int-valueall-type product-valueall-type valueall-type-has-valueall qle_witness le_witness_for_triv istype-int nat_plus_wf nat_plus_inc_int_nzero mk-rational_wf
Rules used in proof :  promote_hyp baseClosed baseApply unionEquality cumulativity instantiate unionIsType inrFormation_alt sqequalBase equalityIstype productIsType inlFormation_alt int_eqEquality dependent_pairFormation_alt approximateComputation independent_pairFormation unionElimination dependent_functionElimination dependent_set_memberEquality_alt closedConclusion rename setElimination addEquality multiplyEquality voidElimination minusEquality callbyvalueReduce natural_numberEquality lambdaFormation_alt lambdaEquality_alt intEquality productEquality independent_functionElimination isectIsTypeImplies independent_isectElimination equalitySymmetry equalityTransitivity isect_memberEquality_alt independent_pairEquality productElimination isect_memberFormation_alt universeIsType inhabitedIsType because_Cache sqequalRule hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a,c:\mBbbZ{}].  \mforall{}[b,d:\mBbbN{}\msupplus{}].    uiff(mk-rational(a;b)  \mleq{}  mk-rational(c;d);(a  *  d)  \mleq{}  (b  *  c))



Date html generated: 2019_10_29-AM-07_46_10
Last ObjectModification: 2019_10_17-AM-09_55_07

Theory : rationals


Home Index