Nuprl Lemma : qle-mk-rational
∀[a,c:ℤ]. ∀[b,d:ℕ+].  uiff(mk-rational(a;b) ≤ mk-rational(c;d);(a * d) ≤ (b * c))
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
mk-rational: mk-rational(a;b)
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
multiply: n * m
, 
int: ℤ
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
band: p ∧b q
, 
guard: {T}
, 
sq_type: SQType(T)
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
prop: ℙ
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
bfalse: ff
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
top: Top
, 
has-valueall: has-valueall(a)
, 
has-value: (a)↓
, 
callbyvalueall: callbyvalueall, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
qsub: r - s
, 
q_le: q_le(r;s)
, 
infix_ap: x f y
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
grp_le: ≤b
, 
qadd_grp: <ℚ+>
, 
grp_leq: a ≤ b
, 
qle: r ≤ s
, 
implies: P 
⇒ Q
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mk-rational: mk-rational(a;b)
Lemmas referenced : 
assert_witness, 
assert_of_eq_int, 
istype-assert, 
assert_of_band, 
assert_of_bor, 
iff_weakening_uiff, 
int_subtype_base, 
set_subtype_base, 
equal-wf-base, 
eq_int_wf, 
bfalse_wf, 
assert_of_lt_int, 
btrue_wf, 
band_wf, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
lt_int_wf, 
bor_wf, 
assert_wf, 
iff_transitivity, 
decidable__equal_int, 
int_formula_prop_eq_lemma, 
int_formula_prop_or_lemma, 
intformeq_wf, 
intformor_wf, 
istype-le, 
istype-less_than, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermMultiply_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_plus_properties, 
decidable__lt, 
mul_bounds_1b, 
qeq-elim, 
nequal_wf, 
mul_nzero, 
qpositive-elim, 
istype-void, 
isint-int, 
qadd-elim, 
int-subtype-rationals, 
qmul-elim, 
evalall-reduce, 
less_than_wf, 
set-valueall-type, 
int-valueall-type, 
product-valueall-type, 
valueall-type-has-valueall, 
qle_witness, 
le_witness_for_triv, 
istype-int, 
nat_plus_wf, 
nat_plus_inc_int_nzero, 
mk-rational_wf
Rules used in proof : 
promote_hyp, 
baseClosed, 
baseApply, 
unionEquality, 
cumulativity, 
instantiate, 
unionIsType, 
inrFormation_alt, 
sqequalBase, 
equalityIstype, 
productIsType, 
inlFormation_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
independent_pairFormation, 
unionElimination, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
closedConclusion, 
rename, 
setElimination, 
addEquality, 
multiplyEquality, 
voidElimination, 
minusEquality, 
callbyvalueReduce, 
natural_numberEquality, 
lambdaFormation_alt, 
lambdaEquality_alt, 
intEquality, 
productEquality, 
independent_functionElimination, 
isectIsTypeImplies, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality_alt, 
independent_pairEquality, 
productElimination, 
isect_memberFormation_alt, 
universeIsType, 
inhabitedIsType, 
because_Cache, 
sqequalRule, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[a,c:\mBbbZ{}].  \mforall{}[b,d:\mBbbN{}\msupplus{}].    uiff(mk-rational(a;b)  \mleq{}  mk-rational(c;d);(a  *  d)  \mleq{}  (b  *  c))
Date html generated:
2019_10_29-AM-07_46_10
Last ObjectModification:
2019_10_17-AM-09_55_07
Theory : rationals
Home
Index