Nuprl Lemma : member-bs_tree_delete

[E:Type]
  ∀cmp:comparison(E). ∀x:E. ∀tr:ordered_bs_tree(E;cmp). ∀z:E.
    (z ∈ bs_tree_delete(cmp;x;tr) ⇐⇒ z ∈ tr ∧ ((cmp x) 0 ∈ ℤ)))


Proof




Definitions occuring in Statement :  bs_tree_delete: bs_tree_delete(cmp;x;tr) ordered_bs_tree: ordered_bs_tree(E;cmp) member_bs_tree: x ∈ tr comparison: comparison(T) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A and: P ∧ Q apply: a natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] ordered_bs_tree: ordered_bs_tree(E;cmp) member: t ∈ T sq_stable: SqStable(P) implies:  Q squash: T so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q guard: {T} member_bs_tree: x ∈ tr bs_tree_delete: bs_tree_delete(cmp;x;tr) bst_null: bst_null() bs_tree_ind: bs_tree_ind false: False not: ¬A bst_leaf: bst_leaf(value) comparison: comparison(T) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  subtype_rel: A ⊆B bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b true: True decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top nequal: a ≠ b ∈  bs_tree_ordered: bs_tree_ordered(E;cmp;tr) bst_node: bst_node(left;value;right) less_than: a < b less_than': less_than'(a;b) cand: c∧ B trans: Trans(T;x,y.E[x; y]) ext-eq: A ≡ B eq_atom: =a y bst_null?: bst_null?(v) pi1: fst(t)
Lemmas referenced :  sq_stable__bs_tree_ordered bs_tree-induction bs_tree_ordered_wf all_wf iff_wf member_bs_tree_wf bs_tree_delete_wf1 not_wf equal-wf-base bs_tree_wf ordered_bs_tree_wf istype-universe comparison_wf istype-void bst_null_wf eq_int_wf eqtt_to_assert assert_of_eq_int int_subtype_base eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int istype-int bst_leaf_wf equal_wf squash_wf true_wf comparison-anti subtype_rel_self iff_weakening_equal decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermMinus_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_minus_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf minus-is-int-iff false_wf bst_node_wf bs_tree_max_wf sq_stable__iff sq_stable__member_bs_tree bs_tree_delete_wf sq_stable__and sq_stable__not lt_int_wf assert_of_lt_int istype-top iff_weakening_uiff assert_wf less_than_wf bst_null?_wf intformless_wf int_formula_prop_less_lemma strict-comparison-trans bs_tree-ext eq_atom_wf assert_of_eq_atom atom_subtype_base unit_wf2 unit_subtype_base it_wf neg_assert_of_eq_atom le_wf bs_tree_max_wf1 or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution setElimination thin rename cut introduction extract_by_obid isectElimination hypothesisEquality dependent_functionElimination hypothesis independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination lambdaEquality_alt functionEquality because_Cache productEquality inhabitedIsType universeIsType universeEquality independent_pairFormation voidElimination productElimination productIsType independent_pairEquality functionIsTypeImplies applyEquality natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination promote_hyp hyp_replacement applyLambdaEquality intEquality equalityIsType1 functionIsType equalityIsType4 dependent_pairFormation_alt instantiate cumulativity approximateComputation int_eqEquality isect_memberEquality_alt pointwiseFunctionality baseApply closedConclusion minusEquality dependent_set_memberEquality_alt lessCases axiomSqEquality inlFormation_alt unionIsType inrFormation_alt hypothesis_subsumption tokenEquality atomEquality equalityIsType2

Latex:
\mforall{}[E:Type]
    \mforall{}cmp:comparison(E).  \mforall{}x:E.  \mforall{}tr:ordered\_bs\_tree(E;cmp).  \mforall{}z:E.
        (z  \mmember{}  bs\_tree\_delete(cmp;x;tr)  \mLeftarrow{}{}\mRightarrow{}  z  \mmember{}  tr  \mwedge{}  (\mneg{}((cmp  z  x)  =  0)))



Date html generated: 2019_10_15-AM-10_47_43
Last ObjectModification: 2018_10_11-PM-08_56_55

Theory : tree_1


Home Index