Nuprl Lemma : mon_for_when_unique
∀s:DSet. ∀g:IMonoid. ∀f:|s| ⟶ |g|. ∀b:|s| ⟶ 𝔹. ∀u:|s|.
  ((↑b[u])
  ⇒ (∀as:|s| List
        ((↑distinct{s}(as))
        ⇒ (↑(u ∈b as))
        ⇒ (∀v:|s|. ((↑b[v]) ⇒ (↑(v ∈b as)) ⇒ (v = u ∈ |s|)))
        ⇒ ((For{g} x ∈ as. (when b[x]. f[x])) = f[u] ∈ |g|))))
Proof
Definitions occuring in Statement : 
distinct: distinct{s}(ps), 
mem: a ∈b as, 
mon_for: For{g} x ∈ as. f[x], 
list: T List, 
assert: ↑b, 
bool: 𝔹, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
equal: s = t ∈ T, 
mon_when: when b. p, 
imon: IMonoid, 
grp_car: |g|, 
dset: DSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
dset: DSet, 
so_apply: x[s], 
imon: IMonoid, 
top: Top, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff, 
false: False, 
infix_ap: x f y, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
band: p ∧b q, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ball: ball, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
mon_when: when b. p, 
not: ¬A
Lemmas referenced : 
list_induction, 
assert_wf, 
distinct_wf, 
mem_wf, 
all_wf, 
set_car_wf, 
equal_wf, 
grp_car_wf, 
mon_for_wf, 
mon_when_wf, 
distinct_nil_lemma, 
istype-void, 
mem_nil_lemma, 
mon_for_nil_lemma, 
true_wf, 
distinct_cons_lemma, 
mem_cons_lemma, 
mon_for_cons_lemma, 
bor_wf, 
set_eq_wf, 
ball_wf, 
bnot_wf, 
infix_ap_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bfalse_wf, 
list_wf, 
imon_wf, 
dset_wf, 
or_wf, 
equal-wf-T-base, 
not_wf, 
squash_wf, 
istype-universe, 
mon_ident, 
subtype_rel_self, 
iff_weakening_equal, 
uiff_transitivity, 
assert_of_bnot, 
assert_of_band, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_dset_eq, 
grp_op_wf, 
mon_for_when_none, 
ball_char, 
grp_id_wf, 
member_wf, 
assert_functionality_wrt_uiff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality_alt, 
functionEquality, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
applyEquality, 
inhabitedIsType, 
universeIsType, 
independent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
functionIsType, 
equalityIsType1, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
unionIsType, 
baseClosed, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
independent_pairFormation, 
inlFormation_alt, 
inrFormation_alt
Latex:
\mforall{}s:DSet.  \mforall{}g:IMonoid.  \mforall{}f:|s|  {}\mrightarrow{}  |g|.  \mforall{}b:|s|  {}\mrightarrow{}  \mBbbB{}.  \mforall{}u:|s|.
    ((\muparrow{}b[u])
    {}\mRightarrow{}  (\mforall{}as:|s|  List
                ((\muparrow{}distinct\{s\}(as))
                {}\mRightarrow{}  (\muparrow{}(u  \mmember{}\msubb{}  as))
                {}\mRightarrow{}  (\mforall{}v:|s|.  ((\muparrow{}b[v])  {}\mRightarrow{}  (\muparrow{}(v  \mmember{}\msubb{}  as))  {}\mRightarrow{}  (v  =  u)))
                {}\mRightarrow{}  ((For\{g\}  x  \mmember{}  as.  (when  b[x].  f[x]))  =  f[u]))))
Date html generated:
2019_10_16-PM-01_02_59
Last ObjectModification:
2018_10_08-AM-11_32_18
Theory : list_2
Home
Index