Nuprl Lemma : poset-cat-arrow-cases

I:Cname List. ∀c1,c2:cat-ob(poset-cat(I)). ∀f:cat-arrow(poset-cat(I)) c1 c2.
  ((c1 c2 ∈ cat-ob(poset-cat(I)))
  ∨ (∃y:{y:nameset(I)| (c1 y) 0 ∈ ℕ2} (c2 flip(c1;y) ∈ cat-ob(poset-cat(I))))
  ∨ (∃c3:cat-ob(poset-cat(I))
      ∃g:cat-arrow(poset-cat(I)) c1 c3
       ∃h:cat-arrow(poset-cat(I)) c3 c2. ((¬(c1 c3 ∈ cat-ob(poset-cat(I)))) ∧ (c2 c3 ∈ cat-ob(poset-cat(I)))))))


Proof




Definitions occuring in Statement :  poset-cat: poset-cat(J) name-morph-flip: flip(f;y) nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} all: x:A. B[x] exists: x:A. B[x] not: ¬A or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  apply: a natural_number: $n equal: t ∈ T cat-arrow: cat-arrow(C) cat-ob: cat-ob(C)
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T or: P ∨ Q exists: x:A. B[x] uall: [x:A]. B[x] subtype_rel: A ⊆B respects-equality: respects-equality(S;T) implies:  Q cat-ob: cat-ob(C) pi1: fst(t) poset-cat: poset-cat(J) name-morph: name-morph(I;J) and: P ∧ Q not: ¬A false: False decidable: Dec(P) cand: c∧ B true: True top: Top iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb bfalse: ff prop: subtract: m satisfiable_int_formula: satisfiable_int_formula(fmla) lelt: i ≤ j < k sq_stable: SqStable(P) squash: T nequal: a ≠ b ∈  int_seg: {i..j-} guard: {T} sq_type: SQType(T) so_apply: x[s] so_lambda: λ2x.t[x] int_upper: {i...} coordinate_name: Cname rev_uimplies: rev_uimplies(P;Q) ifthenelse: if then else fi  uimplies: supposing a uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 exposed-it: exposed-it nameset: nameset(L) pi2: snd(t) cat-arrow: cat-arrow(C) name-morph-flip: flip(f;y)
Lemmas referenced :  poset-cat-ob-cases nameset_wf int_seg_wf extd-nameset-respects-equality nil_wf coordinate_name_wf name-morph-flip_wf subtype_rel_self name-morph_wf cat-ob_wf poset-cat_wf cat-arrow_wf istype-void poset-cat-arrow-not-equal decidable__equal-poset-cat-ob extd-nameset_wf istype-assert isname_wf list_wf int_term_value_var_lemma itermVar_wf l_member_wf istype-le extd-nameset_subtype_int equal_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf bool_cases_sqequal eqff_to_assert int_formula_prop_wf int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf full-omega-unsat decidable__le int_seg_properties decidable__equal-coordinate_name sq_stable__l_member sq_stable__le lelt_wf int_subtype_base istype-int le_wf set_subtype_base subtype_base_sq assert_of_le_int subtract_wf le_int_wf assert_witness assert-eq-cname eqtt_to_assert eq-cname_wf extd-nameset-nil equal-wf-T-base member_wf not_wf bnot_wf bool_cases iff_transitivity assert_of_bnot int_formula_prop_eq_lemma int_formula_prop_and_lemma intformeq_wf intformand_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality unionElimination inlFormation_alt sqequalRule unionIsType productIsType setIsType universeIsType isectElimination equalityIstype natural_numberEquality applyEquality because_Cache baseClosed independent_functionElimination sqequalBase equalitySymmetry inhabitedIsType setElimination rename functionIsType equalityTransitivity voidElimination inrFormation_alt productElimination dependent_pairFormation_alt dependent_set_memberEquality_alt lambdaEquality_alt independent_pairFormation axiomEquality closedConclusion isect_memberEquality_alt int_eqEquality Error :memTop,  approximateComputation imageElimination imageMemberEquality applyLambdaEquality intEquality cumulativity instantiate promote_hyp independent_isectElimination equalityElimination hyp_replacement

Latex:
\mforall{}I:Cname  List.  \mforall{}c1,c2:cat-ob(poset-cat(I)).  \mforall{}f:cat-arrow(poset-cat(I))  c1  c2.
    ((c1  =  c2)
    \mvee{}  (\mexists{}y:\{y:nameset(I)|  (c1  y)  =  0\}  .  (c2  =  flip(c1;y)))
    \mvee{}  (\mexists{}c3:cat-ob(poset-cat(I))
            \mexists{}g:cat-arrow(poset-cat(I))  c1  c3
              \mexists{}h:cat-arrow(poset-cat(I))  c3  c2.  ((\mneg{}(c1  =  c3))  \mwedge{}  (\mneg{}(c2  =  c3)))))



Date html generated: 2020_05_21-AM-10_52_47
Last ObjectModification: 2020_02_07-PM-08_16_58

Theory : cubical!sets


Home Index