Nuprl Lemma : poset-cat-arrow-cases
∀I:Cname List. ∀c1,c2:cat-ob(poset-cat(I)). ∀f:cat-arrow(poset-cat(I)) c1 c2.
  ((c1 = c2 ∈ cat-ob(poset-cat(I)))
  ∨ (∃y:{y:nameset(I)| (c1 y) = 0 ∈ ℕ2} . (c2 = flip(c1;y) ∈ cat-ob(poset-cat(I))))
  ∨ (∃c3:cat-ob(poset-cat(I))
      ∃g:cat-arrow(poset-cat(I)) c1 c3
       ∃h:cat-arrow(poset-cat(I)) c3 c2. ((¬(c1 = c3 ∈ cat-ob(poset-cat(I)))) ∧ (¬(c2 = c3 ∈ cat-ob(poset-cat(I)))))))
Proof
Definitions occuring in Statement : 
poset-cat: poset-cat(J), 
name-morph-flip: flip(f;y), 
nameset: nameset(L), 
coordinate_name: Cname, 
list: T List, 
int_seg: {i..j-}, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
or: P ∨ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
apply: f a, 
natural_number: $n, 
equal: s = t ∈ T, 
cat-arrow: cat-arrow(C), 
cat-ob: cat-ob(C)
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
or: P ∨ Q, 
exists: ∃x:A. B[x], 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
respects-equality: respects-equality(S;T), 
implies: P ⇒ Q, 
cat-ob: cat-ob(C), 
pi1: fst(t), 
poset-cat: poset-cat(J), 
name-morph: name-morph(I;J), 
and: P ∧ Q, 
not: ¬A, 
false: False, 
decidable: Dec(P), 
cand: A c∧ B, 
true: True, 
top: Top, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
assert: ↑b, 
bnot: ¬bb, 
bfalse: ff, 
prop: ℙ, 
subtract: n - m, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
lelt: i ≤ j < k, 
sq_stable: SqStable(P), 
squash: ↓T, 
nequal: a ≠ b ∈ T , 
int_seg: {i..j-}, 
guard: {T}, 
sq_type: SQType(T), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
int_upper: {i...}, 
coordinate_name: Cname, 
rev_uimplies: rev_uimplies(P;Q), 
ifthenelse: if b then t else f fi , 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
exposed-it: exposed-it, 
nameset: nameset(L), 
pi2: snd(t), 
cat-arrow: cat-arrow(C), 
name-morph-flip: flip(f;y)
Lemmas referenced : 
poset-cat-ob-cases, 
nameset_wf, 
int_seg_wf, 
extd-nameset-respects-equality, 
nil_wf, 
coordinate_name_wf, 
name-morph-flip_wf, 
subtype_rel_self, 
name-morph_wf, 
cat-ob_wf, 
poset-cat_wf, 
cat-arrow_wf, 
istype-void, 
poset-cat-arrow-not-equal, 
decidable__equal-poset-cat-ob, 
extd-nameset_wf, 
istype-assert, 
isname_wf, 
list_wf, 
int_term_value_var_lemma, 
itermVar_wf, 
l_member_wf, 
istype-le, 
extd-nameset_subtype_int, 
equal_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
bool_cases_sqequal, 
eqff_to_assert, 
int_formula_prop_wf, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__le, 
int_seg_properties, 
decidable__equal-coordinate_name, 
sq_stable__l_member, 
sq_stable__le, 
lelt_wf, 
int_subtype_base, 
istype-int, 
le_wf, 
set_subtype_base, 
subtype_base_sq, 
assert_of_le_int, 
subtract_wf, 
le_int_wf, 
assert_witness, 
assert-eq-cname, 
eqtt_to_assert, 
eq-cname_wf, 
extd-nameset-nil, 
equal-wf-T-base, 
member_wf, 
not_wf, 
bnot_wf, 
bool_cases, 
iff_transitivity, 
assert_of_bnot, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
intformand_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
unionElimination, 
inlFormation_alt, 
sqequalRule, 
unionIsType, 
productIsType, 
setIsType, 
universeIsType, 
isectElimination, 
equalityIstype, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
baseClosed, 
independent_functionElimination, 
sqequalBase, 
equalitySymmetry, 
inhabitedIsType, 
setElimination, 
rename, 
functionIsType, 
equalityTransitivity, 
voidElimination, 
inrFormation_alt, 
productElimination, 
dependent_pairFormation_alt, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
independent_pairFormation, 
axiomEquality, 
closedConclusion, 
isect_memberEquality_alt, 
int_eqEquality, 
Error :memTop, 
approximateComputation, 
imageElimination, 
imageMemberEquality, 
applyLambdaEquality, 
intEquality, 
cumulativity, 
instantiate, 
promote_hyp, 
independent_isectElimination, 
equalityElimination, 
hyp_replacement
Latex:
\mforall{}I:Cname  List.  \mforall{}c1,c2:cat-ob(poset-cat(I)).  \mforall{}f:cat-arrow(poset-cat(I))  c1  c2.
    ((c1  =  c2)
    \mvee{}  (\mexists{}y:\{y:nameset(I)|  (c1  y)  =  0\}  .  (c2  =  flip(c1;y)))
    \mvee{}  (\mexists{}c3:cat-ob(poset-cat(I))
            \mexists{}g:cat-arrow(poset-cat(I))  c1  c3
              \mexists{}h:cat-arrow(poset-cat(I))  c3  c2.  ((\mneg{}(c1  =  c3))  \mwedge{}  (\mneg{}(c2  =  c3)))))
Date html generated:
2020_05_21-AM-10_52_47
Last ObjectModification:
2020_02_07-PM-08_16_58
Theory : cubical!sets
Home
Index