Nuprl Lemma : rat-cube-third-complex

k,n:ℕ. ∀K:n-dim-complex. ∀c:ℚCube(k).
  ((c ∈ K)  (∀p:ℝ^k. (in-rat-cube(k;p;c)  rat-cube-third(k;p;c)  (∀j:ℕ(¬¬(∀d∈K'^(j).rat-cube-third(k;p;d)))))))


Proof




Definitions occuring in Statement :  rat-cube-third: rat-cube-third(k;p;c) in-rat-cube: in-rat-cube(k;p;c) real-vec: ^n l_all: (∀x∈L.P[x]) l_member: (x ∈ l) nat: all: x:A. B[x] not: ¬A implies:  Q rational-cube-complex: n-dim-complex rational-cube: Cube(k)
Definitions unfolded in proof :  rat-cube-third: rat-cube-third(k;p;c) true: True squash: T cand: c∧ B compatible-rat-cubes: Compatible(c;d) int_seg: {i..j-} so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] stable: Stable{P} subtype_rel: A ⊆B decidable: Dec(P) assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q bfalse: ff uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 rev_implies:  Q iff: ⇐⇒ Q so_apply: x[s] so_lambda: λ2x.t[x] rational-cube-complex: n-dim-complex btrue: tt ifthenelse: if then else fi  subtract: m lt_int: i <j rat-complex-iter-subdiv: Error :rat-complex-iter-subdiv,  prop: and: P ∧ Q top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  false: False nat: member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  rat-cube-third-half member-rat-complex-subdiv2 rat-cube-third-not-in-face istype-universe equal_wf iff_weakening_equal subtype_rel_self true_wf squash_wf rat-cube-face_wf rat-cube-face-dimension-equal decidable__equal_rc in-rat-cube-intersection rat-cube-intersection_wf inhabited-iff-in-rat-cube le_wf int_subtype_base lelt_wf set_subtype_base rat-cube-dimension_wf equal-wf-base compatible-rat-cubes-refl compatible-rat-cubes-symm compatible-rat-cubes_wf Error :pairwise-iff,  stable__false minimal-not-not-excluded-middle minimal-double-negation-hyp-elim l_all_wf2 false_wf stable__not istype-nat rational-cube-complex_wf real-vec_wf in-rat-cube_wf istype-le int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf decidable__le subtract_wf Error :rat-complex-iter-subdiv_wf,  rat-complex-subdiv_wf less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert lt_int_wf subtract-1-ge-0 not_wf l_all_iff rational-cube_wf l_member_wf rat-cube-third_wf Error :not-not-l_all-shift,  primrec-unroll istype-less_than ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties
Rules used in proof :  applyLambdaEquality productIsType hyp_replacement universeEquality baseClosed imageMemberEquality imageElimination addEquality minusEquality intEquality unionIsType functionEquality unionEquality applyEquality dependent_set_memberEquality_alt cumulativity instantiate promote_hyp equalityIstype equalitySymmetry equalityTransitivity equalityElimination unionElimination functionIsType productElimination setIsType because_Cache inhabitedIsType functionIsTypeImplies universeIsType independent_pairFormation sqequalRule voidElimination isect_memberEquality_alt dependent_functionElimination int_eqEquality lambdaEquality_alt dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k,n:\mBbbN{}.  \mforall{}K:n-dim-complex.  \mforall{}c:\mBbbQ{}Cube(k).
    ((c  \mmember{}  K)
    {}\mRightarrow{}  (\mforall{}p:\mBbbR{}\^{}k
                (in-rat-cube(k;p;c)
                {}\mRightarrow{}  rat-cube-third(k;p;c)
                {}\mRightarrow{}  (\mforall{}j:\mBbbN{}.  (\mneg{}\mneg{}(\mforall{}d\mmember{}K'\^{}(j).rat-cube-third(k;p;d)))))))



Date html generated: 2019_11_04-PM-04_43_37
Last ObjectModification: 2019_11_04-PM-04_17_24

Theory : real!vectors


Home Index