Nuprl Lemma : rat-cube-third-complex
∀k,n:ℕ. ∀K:n-dim-complex. ∀c:ℚCube(k).
  ((c ∈ K) 
⇒ (∀p:ℝ^k. (in-rat-cube(k;p;c) 
⇒ rat-cube-third(k;p;c) 
⇒ (∀j:ℕ. (¬¬(∀d∈K'^(j).rat-cube-third(k;p;d)))))))
Proof
Definitions occuring in Statement : 
rat-cube-third: rat-cube-third(k;p;c)
, 
in-rat-cube: in-rat-cube(k;p;c)
, 
real-vec: ℝ^n
, 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
rational-cube-complex: n-dim-complex
, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
rat-cube-third: rat-cube-third(k;p;c)
, 
true: True
, 
squash: ↓T
, 
cand: A c∧ B
, 
compatible-rat-cubes: Compatible(c;d)
, 
int_seg: {i..j-}
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
stable: Stable{P}
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
rational-cube-complex: n-dim-complex
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
subtract: n - m
, 
lt_int: i <z j
, 
rat-complex-iter-subdiv: Error :rat-complex-iter-subdiv, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
false: False
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rat-cube-third-half, 
member-rat-complex-subdiv2, 
rat-cube-third-not-in-face, 
istype-universe, 
equal_wf, 
iff_weakening_equal, 
subtype_rel_self, 
true_wf, 
squash_wf, 
rat-cube-face_wf, 
rat-cube-face-dimension-equal, 
decidable__equal_rc, 
in-rat-cube-intersection, 
rat-cube-intersection_wf, 
inhabited-iff-in-rat-cube, 
le_wf, 
int_subtype_base, 
lelt_wf, 
set_subtype_base, 
rat-cube-dimension_wf, 
equal-wf-base, 
compatible-rat-cubes-refl, 
compatible-rat-cubes-symm, 
compatible-rat-cubes_wf, 
Error :pairwise-iff, 
stable__false, 
minimal-not-not-excluded-middle, 
minimal-double-negation-hyp-elim, 
l_all_wf2, 
false_wf, 
stable__not, 
istype-nat, 
rational-cube-complex_wf, 
real-vec_wf, 
in-rat-cube_wf, 
istype-le, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
decidable__le, 
subtract_wf, 
Error :rat-complex-iter-subdiv_wf, 
rat-complex-subdiv_wf, 
less_than_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
subtract-1-ge-0, 
not_wf, 
l_all_iff, 
rational-cube_wf, 
l_member_wf, 
rat-cube-third_wf, 
Error :not-not-l_all-shift, 
primrec-unroll, 
istype-less_than, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties
Rules used in proof : 
applyLambdaEquality, 
productIsType, 
hyp_replacement, 
universeEquality, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
addEquality, 
minusEquality, 
intEquality, 
unionIsType, 
functionEquality, 
unionEquality, 
applyEquality, 
dependent_set_memberEquality_alt, 
cumulativity, 
instantiate, 
promote_hyp, 
equalityIstype, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
functionIsType, 
productElimination, 
setIsType, 
because_Cache, 
inhabitedIsType, 
functionIsTypeImplies, 
universeIsType, 
independent_pairFormation, 
sqequalRule, 
voidElimination, 
isect_memberEquality_alt, 
dependent_functionElimination, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
intWeakElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k,n:\mBbbN{}.  \mforall{}K:n-dim-complex.  \mforall{}c:\mBbbQ{}Cube(k).
    ((c  \mmember{}  K)
    {}\mRightarrow{}  (\mforall{}p:\mBbbR{}\^{}k
                (in-rat-cube(k;p;c)
                {}\mRightarrow{}  rat-cube-third(k;p;c)
                {}\mRightarrow{}  (\mforall{}j:\mBbbN{}.  (\mneg{}\mneg{}(\mforall{}d\mmember{}K'\^{}(j).rat-cube-third(k;p;d)))))))
Date html generated:
2019_11_04-PM-04_43_37
Last ObjectModification:
2019_11_04-PM-04_17_24
Theory : real!vectors
Home
Index