Nuprl Lemma : Cauchy-Schwarz-equality
∀[n:ℕ]. ∀[x,y:ℝ^n].  ((r0 < ||y||) 
⇒ (|x⋅y| = (||x|| * ||y||)) 
⇒ req-vec(n;x;(x⋅y/||y||^2)*y))
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||
, 
dot-product: x⋅y
, 
real-vec-mul: a*X
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
rdiv: (x/y)
, 
rless: x < y
, 
rabs: |x|
, 
rnexp: x^k1
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
guard: {T}
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
subtype_rel: A ⊆r B
, 
real-vec-mul: a*X
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
dot-product: x⋅y
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
less_than: a < b
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
Lemmas referenced : 
rnexp-positive, 
real-vec-norm_wf, 
false_wf, 
le_wf, 
req_inversion, 
rabs_wf, 
dot-product_wf, 
rmul_wf, 
rless_transitivity1, 
rleq_weakening, 
rless_irreflexivity, 
rless_wf, 
Cauchy-Schwarz-not-strict, 
rnexp_wf, 
int-to-real_wf, 
req_wf, 
req_witness, 
real-vec-mul_wf, 
rdiv_wf, 
int_seg_wf, 
real-vec_wf, 
nat_wf, 
real-vec-norm-positive-iff, 
rneq-symmetry, 
rmul_preserves_req, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
itermConstant_wf, 
req_weakening, 
req_functionality, 
req_transitivity, 
rmul_functionality, 
rmul-rinv, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rmul_assoc, 
rmul-one, 
rmul_comm, 
rinv-mul-as-rdiv, 
rmul-rinv3, 
real-vec-norm-squared, 
rsum_functionality, 
subtract_wf, 
subtract-add-cancel, 
int_seg_properties, 
nat_plus_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
lelt_wf, 
dot-product-linearity2, 
intformle_wf, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
independent_isectElimination, 
because_Cache, 
voidElimination, 
productElimination, 
inrFormation, 
isect_memberFormation, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
isect_memberEquality, 
approximateComputation, 
int_eqEquality, 
intEquality, 
voidEquality, 
unionElimination, 
dependent_pairFormation, 
addEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    ((r0  <  ||y||)  {}\mRightarrow{}  (|x\mcdot{}y|  =  (||x||  *  ||y||))  {}\mRightarrow{}  req-vec(n;x;(x\mcdot{}y/||y||\^{}2)*y))
Date html generated:
2017_10_03-AM-10_53_25
Last ObjectModification:
2017_06_19-PM-04_23_26
Theory : reals
Home
Index