Nuprl Lemma : regular-int-seq-iff
∀k:ℕ+. ∀x:ℕ+ ⟶ ℤ.
  (k-regular-seq(x)
  ⇐⇒ ∀n,m:ℕ+.
        ∃z:ℝ
         ((((r((x n) - 2 * k)/r((2 * k) * n)) ≤ z) ∧ (z ≤ (r((x n) + (2 * k))/r((2 * k) * n))))
         ∧ ((r((x m) - 2 * k)/r((2 * k) * m)) ≤ z)
         ∧ (z ≤ (r((x m) + (2 * k))/r((2 * k) * m)))))
Proof
Definitions occuring in Statement : 
rdiv: (x/y), 
rleq: x ≤ y, 
int-to-real: r(n), 
real: ℝ, 
regular-int-seq: k-regular-seq(f), 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
multiply: n * m, 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
nat_plus: ℕ+, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
so_apply: x[s], 
cand: A c∧ B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
let: let, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
nequal: a ≠ b ∈ T , 
regular-int-seq: k-regular-seq(f), 
uiff: uiff(P;Q), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b
Lemmas referenced : 
nat_plus_wf, 
regular-int-seq_wf, 
all_wf, 
exists_wf, 
real_wf, 
rleq_wf, 
rdiv_wf, 
int-to-real_wf, 
subtract_wf, 
rless-int, 
multiply_nat_plus, 
less_than_wf, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermMultiply_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
equal_wf, 
rless_wf, 
regular-iff-all-regular-upto, 
imax_wf, 
imax_nat_plus, 
regular-upto-iff, 
imax_ub, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
le_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
lelt_wf, 
seq-min-upper_wf, 
nat_plus_subtype_nat, 
rneq-int, 
int_entire_a, 
equal-wf-base, 
int_subtype_base, 
equal-wf-T-base, 
rleq_transitivity, 
rleq-int-fractions, 
mul_nat_plus, 
absval_unfold, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
mul_cancel_in_le, 
multiply-is-int-iff, 
add-is-int-iff, 
subtract-is-int-iff, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
false_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
itermMinus_wf, 
int_term_value_minus_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
productEquality, 
multiplyEquality, 
natural_numberEquality, 
independent_isectElimination, 
inrFormation, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
addEquality, 
functionEquality, 
inlFormation, 
baseApply, 
closedConclusion, 
promote_hyp, 
minusEquality, 
equalityElimination, 
lessCases, 
isect_memberFormation, 
sqequalAxiom, 
imageElimination, 
pointwiseFunctionality, 
instantiate
Latex:
\mforall{}k:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.
    (k-regular-seq(x)
    \mLeftarrow{}{}\mRightarrow{}  \mforall{}n,m:\mBbbN{}\msupplus{}.
                \mexists{}z:\mBbbR{}
                  ((((r((x  n)  -  2  *  k)/r((2  *  k)  *  n))  \mleq{}  z)  \mwedge{}  (z  \mleq{}  (r((x  n)  +  (2  *  k))/r((2  *  k)  *  n))))
                  \mwedge{}  ((r((x  m)  -  2  *  k)/r((2  *  k)  *  m))  \mleq{}  z)
                  \mwedge{}  (z  \mleq{}  (r((x  m)  +  (2  *  k))/r((2  *  k)  *  m)))))
 Date html generated: 
2017_10_03-AM-08_44_57
 Last ObjectModification: 
2017_09_11-PM-01_33_13
Theory : reals
Home
Index