Nuprl Lemma : regular-int-seq-iff

k:ℕ+. ∀x:ℕ+ ⟶ ℤ.
  (k-regular-seq(x)
  ⇐⇒ ∀n,m:ℕ+.
        ∃z:ℝ
         ((((r((x n) k)/r((2 k) n)) ≤ z) ∧ (z ≤ (r((x n) (2 k))/r((2 k) n))))
         ∧ ((r((x m) k)/r((2 k) m)) ≤ z)
         ∧ (z ≤ (r((x m) (2 k))/r((2 k) m)))))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y int-to-real: r(n) real: regular-int-seq: k-regular-seq(f) nat_plus: + all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] multiply: m subtract: m add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] nat_plus: + rev_implies:  Q so_lambda: λ2x.t[x] uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q less_than: a < b squash: T less_than': less_than'(a;b) true: True decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top so_apply: x[s] cand: c∧ B int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B let: let subtype_rel: A ⊆B nat: nequal: a ≠ b ∈  regular-int-seq: k-regular-seq(f) uiff: uiff(P;Q) bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  nat_plus_wf regular-int-seq_wf all_wf exists_wf real_wf rleq_wf rdiv_wf int-to-real_wf subtract_wf rless-int multiply_nat_plus less_than_wf nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermMultiply_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf rless_wf regular-iff-all-regular-upto imax_wf imax_nat_plus regular-upto-iff imax_ub decidable__le intformle_wf int_formula_prop_le_lemma le_wf itermAdd_wf int_term_value_add_lemma lelt_wf seq-min-upper_wf nat_plus_subtype_nat rneq-int int_entire_a equal-wf-base int_subtype_base equal-wf-T-base rleq_transitivity rleq-int-fractions mul_nat_plus absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int mul_cancel_in_le multiply-is-int-iff add-is-int-iff subtract-is-int-iff itermSubtract_wf int_term_value_subtract_lemma false_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot itermMinus_wf int_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality functionExtensionality applyEquality sqequalRule lambdaEquality because_Cache productEquality multiplyEquality natural_numberEquality independent_isectElimination inrFormation dependent_functionElimination productElimination independent_functionElimination dependent_set_memberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry applyLambdaEquality unionElimination approximateComputation dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality addEquality functionEquality inlFormation baseApply closedConclusion promote_hyp minusEquality equalityElimination lessCases isect_memberFormation sqequalAxiom imageElimination pointwiseFunctionality instantiate

Latex:
\mforall{}k:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.
    (k-regular-seq(x)
    \mLeftarrow{}{}\mRightarrow{}  \mforall{}n,m:\mBbbN{}\msupplus{}.
                \mexists{}z:\mBbbR{}
                  ((((r((x  n)  -  2  *  k)/r((2  *  k)  *  n))  \mleq{}  z)  \mwedge{}  (z  \mleq{}  (r((x  n)  +  (2  *  k))/r((2  *  k)  *  n))))
                  \mwedge{}  ((r((x  m)  -  2  *  k)/r((2  *  k)  *  m))  \mleq{}  z)
                  \mwedge{}  (z  \mleq{}  (r((x  m)  +  (2  *  k))/r((2  *  k)  *  m)))))



Date html generated: 2017_10_03-AM-08_44_57
Last ObjectModification: 2017_09_11-PM-01_33_13

Theory : reals


Home Index