Nuprl Lemma : unsquashed-continuity-false-troelstra

¬(∀F:(ℕ ⟶ ℕ) ⟶ ℕ. ∀a:ℕ ⟶ ℕ.  ∃n:ℕ. ∀b:ℕ ⟶ ℕ((a b ∈ (ℕn ⟶ ℕ))  ((F a) (F b) ∈ ℕ)))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  not: ¬A implies:  Q all: x:A. B[x] member: t ∈ T exists: x:A. B[x] uall: [x:A]. B[x] nat: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False pi1: fst(t) phi-star: Phi* decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: cand: c∧ B isl: isl(x) outl: outl(x) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} gamma-neighbourhood: gamma-neighbourhood(beta;n0) exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  assert: b bfalse: ff bnot: ¬bb squash: T true: True iff: ⇐⇒ Q rev_implies:  Q finite-nat-seq: finite-nat-seq() mk-finite-nat-seq: f^(n) pi2: snd(t) ext-finite-nat-seq: ext-finite-nat-seq(f;x) append-finite-nat-seq: f**g int_seg: {i..j-} less_than: a < b ge: i ≥  lelt: i ≤ j < k
Lemmas referenced :  istype-nat zero-seq_wf int_seg_wf subtype_rel_function nat_wf int_seg_subtype_nat istype-false subtype_rel_self gamma-neighbourhood-prop1 finite-nat-seq_wf phi-star_wf decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le istype-assert gamma-neighbourhood_wf mk-finite-nat-seq_wf btrue_wf bfalse_wf assert_elim union_subtype_base unit_wf2 set_subtype_base le_wf int_subtype_base unit_subtype_base btrue_neq_bfalse append-finite-nat-seq_wf assert_wf equal-wf-base subtype_base_sq init-seg-nat-seq_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot extend-seq1-all-dec decidable_wf not_wf true_wf equal_wf squash_wf iff_weakening_equal gamma-neighbourhood-prop2 decidable__equal_int ext-finite-nat-seq_wf lt_int_wf assert_of_lt_int istype-top iff_weakening_uiff less_than_wf istype-less_than int_seg_properties nat_properties intformand_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma itermAdd_wf int_term_value_add_lemma gamma-neighbourhood-prop3 gamma-neighbourhood-prop4 intformeq_wf int_formula_prop_eq_lemma gamma-neighbourhood-prop5 gamma-neighbourhood-prop6 eq-seg-nat-seq_wf assert-eq-seg-nat-seq Troelstra-lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality Error :functionIsType,  Error :inhabitedIsType,  introduction extract_by_obid because_Cache promote_hyp productElimination sqequalRule Error :productIsType,  Error :equalityIstype,  Error :universeIsType,  isectElimination natural_numberEquality setElimination rename applyEquality independent_isectElimination independent_pairFormation Error :lambdaEquality_alt,  Error :dependent_pairFormation_alt,  functionExtensionality functionEquality equalityTransitivity equalitySymmetry independent_functionElimination Error :dependent_set_memberEquality_alt,  unionElimination approximateComputation Error :isect_memberEquality_alt,  voidElimination baseApply closedConclusion baseClosed intEquality sqequalBase applyLambdaEquality Error :unionIsType,  productEquality Error :functionExtensionality_alt,  instantiate cumulativity equalityElimination imageElimination universeEquality imageMemberEquality Error :equalityIsType4,  Error :equalityIsType1,  addEquality lessCases Error :isect_memberFormation_alt,  axiomSqEquality Error :isectIsTypeImplies,  int_eqEquality unionEquality

Latex:
\mneg{}(\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    \mexists{}n:\mBbbN{}.  \mforall{}b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((a  =  b)  {}\mRightarrow{}  ((F  a)  =  (F  b))))



Date html generated: 2019_06_20-PM-03_05_14
Last ObjectModification: 2018_12_06-PM-11_57_48

Theory : continuity


Home Index