Nuprl Lemma : l_member-first

[A:Type]. ∀d:A List. ∀x:A. ∀eq:EqDecider(A).  ((x ∈ d)  (∃i:ℕ||d||. ((∀j:ℕi. (d[j] x ∈ A))) ∧ (d[i] x ∈ A))))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) select: L[n] length: ||as|| list: List deq: EqDecider(T) int_seg: {i..j-} uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: and: P ∧ Q int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top less_than: a < b squash: T so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt eqof: eqof(d) deq: EqDecider(T) uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b le: A ≤ B less_than': less_than'(a;b) nat_plus: + true: True select: L[n] cons: [a b] cand: c∧ B ge: i ≥  iff: ⇐⇒ Q subtract: m subtype_rel: A ⊆B rev_implies:  Q
Lemmas referenced :  list_induction all_wf deq_wf l_member_wf exists_wf int_seg_wf length_wf not_wf equal_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma list_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf btrue_neq_bfalse eqof_wf bool_wf eqtt_to_assert safe-assert-deq length_of_cons_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot cons_wf false_wf add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma lelt_wf non_neg_length cons_member add-member-int_seg2 subtract_wf itermSubtract_wf int_term_value_subtract_lemma select-cons-tl add-subtract-cancel decidable__equal_int int_subtype_base squash_wf true_wf select_cons_tl iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity because_Cache hypothesis functionEquality natural_numberEquality productEquality setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination independent_functionElimination equalityTransitivity equalitySymmetry applyEquality equalityElimination promote_hyp instantiate universeEquality dependent_set_memberEquality imageMemberEquality baseClosed applyLambdaEquality pointwiseFunctionality baseApply closedConclusion addEquality

Latex:
\mforall{}[A:Type]
    \mforall{}d:A  List.  \mforall{}x:A.  \mforall{}eq:EqDecider(A).
        ((x  \mmember{}  d)  {}\mRightarrow{}  (\mexists{}i:\mBbbN{}||d||.  ((\mforall{}j:\mBbbN{}i.  (\mneg{}(d[j]  =  x)))  \mwedge{}  (d[i]  =  x))))



Date html generated: 2017_04_17-AM-09_15_43
Last ObjectModification: 2017_02_27-PM-05_21_32

Theory : decidable!equality


Home Index