Nuprl Lemma : l_member-first
∀[A:Type]. ∀d:A List. ∀x:A. ∀eq:EqDecider(A).  ((x ∈ d) 
⇒ (∃i:ℕ||d||. ((∀j:ℕi. (¬(d[j] = x ∈ A))) ∧ (d[i] = x ∈ A))))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
deq: EqDecider(T)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
so_apply: x[s]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
eqof: eqof(d)
, 
deq: EqDecider(T)
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nat_plus: ℕ+
, 
true: True
, 
select: L[n]
, 
cons: [a / b]
, 
cand: A c∧ B
, 
ge: i ≥ j 
, 
iff: P 
⇐⇒ Q
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
all_wf, 
deq_wf, 
l_member_wf, 
exists_wf, 
int_seg_wf, 
length_wf, 
not_wf, 
equal_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
list_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
eqof_wf, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
length_of_cons_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
cons_wf, 
false_wf, 
add_nat_plus, 
length_wf_nat, 
less_than_wf, 
nat_plus_wf, 
nat_plus_properties, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
lelt_wf, 
non_neg_length, 
cons_member, 
add-member-int_seg2, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
select-cons-tl, 
add-subtract-cancel, 
decidable__equal_int, 
int_subtype_base, 
squash_wf, 
true_wf, 
select_cons_tl, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
because_Cache, 
hypothesis, 
functionEquality, 
natural_numberEquality, 
productEquality, 
setElimination, 
rename, 
independent_isectElimination, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
equalityElimination, 
promote_hyp, 
instantiate, 
universeEquality, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
addEquality
Latex:
\mforall{}[A:Type]
    \mforall{}d:A  List.  \mforall{}x:A.  \mforall{}eq:EqDecider(A).
        ((x  \mmember{}  d)  {}\mRightarrow{}  (\mexists{}i:\mBbbN{}||d||.  ((\mforall{}j:\mBbbN{}i.  (\mneg{}(d[j]  =  x)))  \mwedge{}  (d[i]  =  x))))
Date html generated:
2017_04_17-AM-09_15_43
Last ObjectModification:
2017_02_27-PM-05_21_32
Theory : decidable!equality
Home
Index