Nuprl Lemma : fact-greater-exp

k,n:ℕ.  ∃m:ℕk^m < (m)!


Proof




Definitions occuring in Statement :  fact: (n)! exp: i^n nat: less_than: a < b all: x:A. B[x] exists: x:A. B[x] multiply: m
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: le: A ≤ B nat_plus: + subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q subtract: m guard: {T} uiff: uiff(P;Q) sq_type: SQType(T) so_lambda: λ2x.t[x] so_apply: x[s] less_than': less_than'(a;b) fact: (n)! exp: i^n iff: ⇐⇒ Q rev_implies:  Q true: True less_than: a < b squash: T
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf less_than'_wf fact_wf nat_plus_properties nat_plus_wf exp_wf2 exp0_lemma fact_unroll_1 intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma equal-wf-T-base decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma nat_wf itermMultiply_wf int_term_value_mul_lemma mul-distributes mul-distributes-right add-associates mul-swap mul-commutes mul-associates zero-mul one-mul zero-add add-commutes mul_preserves_le general_arith_equation1 multiply_nat_wf add_nat_wf nat_plus_subtype_nat exp_wf4 multiply-is-int-iff false_wf equal_wf subtype_base_sq int_subtype_base exp_step set_subtype_base decidable__equal_int primrec1_lemma decidable__lt add-is-int-iff not-lt-2 not-equal-2 add_functionality_wrt_le add-zero le-add-cancel condition-implies-le minus-add minus-zero mul_bounds_1a fact-positive mul_preserves_lt exp_wf_nat_plus exp_add
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination productElimination independent_pairEquality applyEquality because_Cache multiplyEquality addEquality axiomEquality equalityTransitivity equalitySymmetry baseClosed dependent_set_memberEquality unionElimination minusEquality applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion instantiate cumulativity imageElimination

Latex:
\mforall{}k,n:\mBbbN{}.    \mexists{}m:\mBbbN{}.  n  *  k\^{}m  <  (m)!



Date html generated: 2018_05_21-PM-01_02_02
Last ObjectModification: 2018_01_28-PM-02_12_26

Theory : num_thy_1


Home Index