Nuprl Lemma : fib_coprime
∀n:ℕ. CoPrime(fib(n),fib(n + 1))
Proof
Definitions occuring in Statement : 
fib: fib(n), 
coprime: CoPrime(a,b), 
nat: ℕ, 
all: ∀x:A. B[x], 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
ge: i ≥ j , 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
and: P ∧ Q, 
top: Top, 
not: ¬A, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
uimplies: b supposing a, 
or: P ∨ Q, 
decidable: Dec(P), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
bfalse: ff, 
bor: p ∨bq, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
subtract: n - m, 
eq_int: (i =z j), 
fib: fib(n), 
coprime: CoPrime(a,b), 
sq_type: SQType(T), 
guard: {T}, 
uiff: uiff(P;Q), 
bnot: ¬bb, 
assert: ↑b, 
band: p ∧b q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅
Lemmas referenced : 
int_term_value_add_lemma, 
itermAdd_wf, 
nat_properties, 
primrec-wf2, 
less_than_wf, 
set_wf, 
nat_wf, 
subtract-add-cancel, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
subtract_wf, 
decidable__le, 
fib_wf, 
coprime_wf, 
testxxx_lemma, 
gcd_p_one, 
istype-void, 
add-associates, 
add-commutes, 
add-swap, 
zero-add, 
bor_wf, 
eq_int_wf, 
equal-wf-base, 
bool_wf, 
int_subtype_base, 
assert_wf, 
istype-assert, 
full-omega-unsat, 
intformor_wf, 
intformeq_wf, 
istype-int, 
int_formula_prop_or_lemma, 
int_formula_prop_eq_lemma, 
bnot_wf, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
btrue_wf, 
bool_cases_sqequal, 
eqff_to_assert, 
assert-bnot, 
neg_assert_of_eq_int, 
bfalse_wf, 
not_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
assert_of_eq_int, 
istype-le, 
gcd_p_sym, 
one-mul, 
assert_of_bor, 
bnot_thru_bor, 
assert_of_band, 
gcd_p_shift
Rules used in proof : 
addEquality, 
applyEquality, 
computeAll, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_isectElimination, 
unionElimination, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
dependent_functionElimination, 
because_Cache, 
dependent_set_memberEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
setElimination, 
rename, 
thin, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
Error :isect_memberEquality_alt, 
baseApply, 
closedConclusion, 
baseClosed, 
unionEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :equalityIstype, 
Error :inhabitedIsType, 
sqequalBase, 
Error :unionIsType, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
Error :universeIsType, 
instantiate, 
cumulativity, 
productElimination, 
promote_hyp, 
productEquality, 
Error :lambdaFormation_alt, 
Error :functionIsType, 
Error :productIsType, 
Error :dependent_set_memberEquality_alt, 
minusEquality, 
equalityElimination, 
Error :inlFormation_alt, 
Error :inrFormation_alt
Latex:
\mforall{}n:\mBbbN{}.  CoPrime(fib(n),fib(n  +  1))
Date html generated:
2019_06_20-PM-02_25_15
Last ObjectModification:
2019_02_05-PM-03_57_52
Theory : num_thy_1
Home
Index