Nuprl Lemma : fib_coprime

n:ℕCoPrime(fib(n),fib(n 1))


Proof




Definitions occuring in Statement :  fib: fib(n) coprime: CoPrime(a,b) nat: all: x:A. B[x] add: m natural_number: $n
Definitions unfolded in proof :  ge: i ≥  so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B and: P ∧ Q top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a or: P ∨ Q decidable: Dec(P) nat: uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x] bfalse: ff bor: p ∨bq btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) fib: fib(n) coprime: CoPrime(a,b) sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) bnot: ¬bb assert: b band: p ∧b q iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it:
Lemmas referenced :  int_term_value_add_lemma itermAdd_wf nat_properties primrec-wf2 less_than_wf set_wf nat_wf subtract-add-cancel le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt subtract_wf decidable__le fib_wf coprime_wf testxxx_lemma gcd_p_one istype-void add-associates add-commutes add-swap zero-add bor_wf eq_int_wf equal-wf-base bool_wf int_subtype_base assert_wf istype-assert full-omega-unsat intformor_wf intformeq_wf istype-int int_formula_prop_or_lemma int_formula_prop_eq_lemma bnot_wf bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert band_wf btrue_wf bool_cases_sqequal eqff_to_assert assert-bnot neg_assert_of_eq_int bfalse_wf not_wf iff_transitivity iff_weakening_uiff assert_of_bnot assert_of_eq_int istype-le gcd_p_sym one-mul assert_of_bor bnot_thru_bor assert_of_band gcd_p_shift
Rules used in proof :  addEquality applyEquality computeAll independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination unionElimination hypothesis hypothesisEquality natural_numberEquality dependent_functionElimination because_Cache dependent_set_memberEquality isectElimination sqequalHypSubstitution extract_by_obid introduction setElimination rename thin cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution Error :isect_memberEquality_alt,  baseApply closedConclusion baseClosed unionEquality equalityTransitivity equalitySymmetry Error :equalityIstype,  Error :inhabitedIsType,  sqequalBase Error :unionIsType,  approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :universeIsType,  instantiate cumulativity productElimination promote_hyp productEquality Error :lambdaFormation_alt,  Error :functionIsType,  Error :productIsType,  Error :dependent_set_memberEquality_alt,  minusEquality equalityElimination Error :inlFormation_alt,  Error :inrFormation_alt

Latex:
\mforall{}n:\mBbbN{}.  CoPrime(fib(n),fib(n  +  1))



Date html generated: 2019_06_20-PM-02_25_15
Last ObjectModification: 2019_02_05-PM-03_57_52

Theory : num_thy_1


Home Index