Nuprl Lemma : ap-tuple_wf
∀[n:ℕ]. ∀[A,B:Type List].
  ∀[f:tuple-type(map(λp.((fst(p)) ⟶ (snd(p)));zip(A;B)))]. ∀[t:tuple-type(A)].  (ap-tuple(n;f;t) ∈ tuple-type(B)) 
  supposing (||A|| = n ∈ ℤ) ∧ (||B|| = n ∈ ℤ)
Proof
Definitions occuring in Statement : 
ap-tuple: ap-tuple(len;f;t)
, 
tuple-type: tuple-type(L)
, 
zip: zip(as;bs)
, 
length: ||as||
, 
map: map(f;as)
, 
list: T List
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
and: P ∧ Q
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
or: P ∨ Q
, 
ap-tuple: ap-tuple(len;f;t)
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cons: [a / b]
, 
le: A ≤ B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nequal: a ≠ b ∈ T 
, 
decidable: Dec(P)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
list-cases, 
tupletype_nil_lemma, 
zip_nil_lemma, 
map_nil_lemma, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
non_neg_length, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
tupletype_cons_lemma, 
null_wf, 
eqtt_to_assert, 
assert_of_null, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
equal-wf-T-base, 
list_wf, 
tuple-type_wf, 
map_wf, 
zip_wf, 
length_wf_nat, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
subtract-1-ge-0, 
zip_cons_cons_lemma, 
map_cons_lemma, 
eq_int_wf, 
assert_of_eq_int, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
neg_assert_of_eq_int, 
null_nil_lemma, 
null_cons_lemma, 
zip_cons_nil_lemma, 
btrue_wf, 
bfalse_wf, 
btrue_neq_bfalse, 
nil_wf, 
intformnot_wf, 
int_formula_prop_not_lemma, 
nat_wf, 
bnot_wf, 
not_wf, 
bool_cases, 
iff_transitivity, 
assert_of_bnot, 
decidable__equal_int, 
add-is-int-iff, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
Error :lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
instantiate, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
Error :inhabitedIsType, 
equalityElimination, 
because_Cache, 
Error :equalityIsType1, 
cumulativity, 
baseClosed, 
Error :equalityIsType3, 
productEquality, 
functionEquality, 
Error :productIsType, 
Error :equalityIsType4, 
applyEquality, 
intEquality, 
Error :equalityIsType2, 
baseApply, 
closedConclusion, 
Error :dependent_set_memberEquality_alt, 
applyLambdaEquality, 
independent_pairEquality, 
pointwiseFunctionality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[A,B:Type  List].
    \mforall{}[f:tuple-type(map(\mlambda{}p.((fst(p))  {}\mrightarrow{}  (snd(p)));zip(A;B)))].  \mforall{}[t:tuple-type(A)].
        (ap-tuple(n;f;t)  \mmember{}  tuple-type(B)) 
    supposing  (||A||  =  n)  \mwedge{}  (||B||  =  n)
Date html generated:
2019_06_20-PM-02_03_12
Last ObjectModification:
2018_10_06-AM-08_30_10
Theory : tuples
Home
Index