Nuprl Lemma : append-tuple-zero

[L:Type List]. ∀[x:tuple-type(L)]. ∀[y:Top].  (append-tuple(||L||;0;x;y) if (||L|| =z 0) then else fi )


Proof




Definitions occuring in Statement :  append-tuple: append-tuple(n;m;x;y) tuple-type: tuple-type(L) length: ||as|| list: List ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] top: Top natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q append-tuple: append-tuple(n;m;x;y) le_int: i ≤j lt_int: i <j bnot: ¬bb ifthenelse: if then else fi  bfalse: ff eq_int: (i =z j) btrue: tt subtract: m cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bool: 𝔹 unit: Unit uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B assert: b true: True
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf top_wf tuple-type_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list_wf list-cases tupletype_nil_lemma length_of_nil_lemma unit_wf2 product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int tupletype_cons_lemma length_of_cons_lemma null_wf bool_wf uiff_transitivity assert_wf eqtt_to_assert assert_of_null le_int_wf length_wf assert_of_le_int eq_int_wf assert_of_eq_int iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot non_neg_length lt_int_wf assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int add-is-int-iff false_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int squash_wf true_wf add_functionality_wrt_eq iff_weakening_equal add-subtract-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom instantiate universeEquality applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed cumulativity imageElimination equalityElimination impliesFunctionality pointwiseFunctionality baseApply closedConclusion imageMemberEquality

Latex:
\mforall{}[L:Type  List].  \mforall{}[x:tuple-type(L)].  \mforall{}[y:Top].
    (append-tuple(||L||;0;x;y)  \msim{}  if  (||L||  =\msubz{}  0)  then  y  else  x  fi  )



Date html generated: 2017_04_17-AM-09_30_07
Last ObjectModification: 2017_02_27-PM-05_31_02

Theory : tuples


Home Index