Nuprl Lemma : chinese-remainder2

r,s,a,b:ℤ.  Dec(∃x:ℤ [((x ≡ mod r) ∧ (x ≡ mod s))])


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m decidable: Dec(P) all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] and: P ∧ Q uall: [x:A]. B[x] nat: subtype_rel: A ⊆B sq_exists: x:A [B[x]] decidable: Dec(P) not: ¬A or: P ∨ Q cand: c∧ B guard: {T} uimplies: supposing a prop: implies:  Q nequal: a ≠ b ∈  bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) eqmod: a ≡ mod m divides: a ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top int_nzero: -o has-value: (a)↓ true: True squash: T
Lemmas referenced :  gcd-reduce eq_int_wf bool_wf equal-wf-T-base assert_wf equal-wf-base int_subtype_base eqmod_weakening eqmod_wf false_wf bnot_wf not_wf subtract_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf subtype_base_sq nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf itermMultiply_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_wf itermSubtract_wf int_term_value_subtract_lemma div_rem_sum nequal_wf add-is-int-iff multiply-is-int-iff itermAdd_wf int_term_value_add_lemma value-type-has-value int-value-type equal-wf-base-T eqmod-zero eqmod_functionality_wrt_eqmod add_functionality_wrt_eqmod multiply_functionality_wrt_eqmod mul-swap mul-commutes zero-mul add-zero squash_wf true_wf mul_assoc minus_functionality_wrt_eq iff_weakening_equal itermMinus_wf int_term_value_minus_lemma minus_functionality_wrt_eqmod minus-one-mul mul-associates divides_iff_rem_zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination intEquality isectElimination setElimination rename hypothesis natural_numberEquality equalityTransitivity equalitySymmetry baseClosed because_Cache sqequalRule baseApply closedConclusion applyEquality inlEquality dependent_set_memberEquality independent_pairFormation independent_isectElimination productEquality functionEquality setEquality inrEquality lambdaEquality remainderEquality unionElimination equalityElimination independent_functionElimination impliesFunctionality promote_hyp instantiate cumulativity dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll pointwiseFunctionality divideEquality callbyvalueReduce addEquality multiplyEquality imageElimination universeEquality imageMemberEquality minusEquality

Latex:
\mforall{}r,s,a,b:\mBbbZ{}.    Dec(\mexists{}x:\mBbbZ{}  [((x  \mequiv{}  a  mod  r)  \mwedge{}  (x  \mequiv{}  b  mod  s))])



Date html generated: 2018_05_21-PM-08_11_50
Last ObjectModification: 2017_07_26-PM-05_47_07

Theory : general


Home Index