Nuprl Lemma : super-fact-int-prod-exp
∀[k:ℕ]. ((k)!! = Π(k - i^i + 1 | i < k) ∈ ℤ)
Proof
Definitions occuring in Statement : 
super-fact: (n)!!
, 
exp: i^n
, 
int-prod: Π(f[x] | x < k)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
super-fact: (n)!!
, 
primrec: primrec(n;b;c)
, 
int-prod: Π(f[x] | x < k)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
so_apply: x[s]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat_plus: ℕ+
, 
sq_type: SQType(T)
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
true: True
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
exp: i^n
Lemmas referenced : 
one-mul, 
add-swap, 
true_wf, 
squash_wf, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
decidable__equal_int, 
primrec1_lemma, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
fact_unroll, 
lelt_wf, 
int-prod-split, 
int_prod0_lemma, 
fact0_redex_lemma, 
add-subtract-cancel, 
le-add-cancel, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
add-commutes, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-lt-2, 
decidable__lt, 
exp_step, 
iff_weakening_equal, 
int_seg_subtype_nat, 
int-prod-factor, 
int_term_value_add_lemma, 
itermAdd_wf, 
nat_wf, 
int_subtype_base, 
subtype_base_sq, 
super-fact-unroll, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
decidable__le, 
int_seg_wf, 
subtract_wf, 
int_seg_properties, 
exp_wf2, 
le_wf, 
false_wf, 
int-prod_wf, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
introduction, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
dependent_set_memberEquality, 
because_Cache, 
productElimination, 
unionElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
equalityEquality, 
addEquality, 
applyEquality, 
imageElimination, 
minusEquality, 
multiplyEquality, 
imageMemberEquality, 
baseClosed, 
equalityElimination, 
promote_hyp, 
functionEquality
Latex:
\mforall{}[k:\mBbbN{}].  ((k)!!  =  \mPi{}(k  -  i\^{}i  +  1  |  i  <  k))
Date html generated:
2016_05_15-PM-04_08_49
Last ObjectModification:
2016_01_16-AM-11_04_07
Theory : general
Home
Index