Nuprl Lemma : super-fact-int-prod-exp

[k:ℕ]. ((k)!! = Π(k i^i i < k) ∈ ℤ)


Proof




Definitions occuring in Statement :  super-fact: (n)!! exp: i^n int-prod: Π(f[x] x < k) nat: uall: [x:A]. B[x] subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: super-fact: (n)!! primrec: primrec(n;b;c) int-prod: Π(f[x] x < k) le: A ≤ B less_than': less_than'(a;b) so_lambda: λ2x.t[x] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k so_apply: x[s] decidable: Dec(P) or: P ∨ Q nat_plus: + sq_type: SQType(T) subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q squash: T uiff: uiff(P;Q) subtract: m true: True bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈  exp: i^n
Lemmas referenced :  one-mul add-swap true_wf squash_wf int_term_value_mul_lemma itermMultiply_wf decidable__equal_int primrec1_lemma neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal equal_wf eqff_to_assert int_formula_prop_eq_lemma intformeq_wf assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf fact_unroll lelt_wf int-prod-split int_prod0_lemma fact0_redex_lemma add-subtract-cancel le-add-cancel add-zero add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le not-lt-2 decidable__lt exp_step iff_weakening_equal int_seg_subtype_nat int-prod-factor int_term_value_add_lemma itermAdd_wf nat_wf int_subtype_base subtype_base_sq super-fact-unroll int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf decidable__le int_seg_wf subtract_wf int_seg_properties exp_wf2 le_wf false_wf int-prod_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename introduction intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality dependent_set_memberEquality because_Cache productElimination unionElimination instantiate cumulativity equalityTransitivity equalitySymmetry equalityEquality addEquality applyEquality imageElimination minusEquality multiplyEquality imageMemberEquality baseClosed equalityElimination promote_hyp functionEquality

Latex:
\mforall{}[k:\mBbbN{}].  ((k)!!  =  \mPi{}(k  -  i\^{}i  +  1  |  i  <  k))



Date html generated: 2016_05_15-PM-04_08_49
Last ObjectModification: 2016_01_16-AM-11_04_07

Theory : general


Home Index