Nuprl Lemma : fdl-is-1_wf
∀[X:Type]. ∀[x:Point(free-dl(X))].  (fdl-is-1(x) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
fdl-is-1: fdl-is-1(x), 
free-dl: free-dl(X), 
lattice-point: Point(l), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
lattice-point: Point(l), 
record-select: r.x, 
free-dl: free-dl(X), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
free-dl-type: free-dl-type(X), 
quotient: x,y:A//B[x; y], 
all: ∀x:A. B[x], 
prop: ℙ, 
implies: P ⇒ Q, 
cand: A c∧ B, 
and: P ∧ Q, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
guard: {T}, 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
refl: Refl(T;x,y.E[x; y]), 
dlattice-eq: dlattice-eq(X;as;bs), 
dlattice-order: as ⇒ bs, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
nil: [], 
it: ⋅, 
assert: ↑b, 
cons: [a / b], 
false: False, 
l_contains: A ⊆ B, 
l_all: (∀x∈L.P[x]), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
nat_plus: ℕ+, 
less_than: a < b, 
decidable: Dec(P), 
uiff: uiff(P;Q), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
ge: i ≥ j , 
fdl-is-1: fdl-is-1(x)
Lemmas referenced : 
dlattice-eq-equiv, 
list_wf, 
dlattice-eq_wf, 
bool_wf, 
equal-wf-base, 
member_wf, 
squash_wf, 
true_wf, 
lattice-point_wf, 
free-dl_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
assert-bl-exists, 
isaxiom_wf_list, 
l_member_wf, 
assert_wf, 
bl-exists_wf, 
l_exists_wf, 
dlattice-order_wf, 
l_all_iff, 
l_contains_wf, 
l_exists_iff, 
exists_wf, 
all_wf, 
list-cases, 
product_subtype_list, 
length_of_cons_lemma, 
false_wf, 
add_nat_plus, 
length_wf_nat, 
less_than_wf, 
nat_plus_wf, 
nat_plus_properties, 
decidable__lt, 
add-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
lelt_wf, 
length_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
select_wf, 
cons_wf, 
non_neg_length, 
intformle_wf, 
int_formula_prop_le_lemma, 
btrue_neq_bfalse, 
iff_imp_equal_bool
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
cumulativity, 
hypothesis, 
promote_hyp, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
dependent_functionElimination, 
pointwiseFunctionality, 
pertypeElimination, 
productElimination, 
independent_functionElimination, 
productEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
independent_isectElimination, 
addLevel, 
impliesFunctionality, 
setElimination, 
rename, 
setEquality, 
functionEquality, 
allFunctionality, 
levelHypothesis, 
dependent_pairFormation, 
unionElimination, 
hypothesis_subsumption, 
voidElimination, 
isect_memberEquality, 
voidEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
baseApply, 
closedConclusion, 
int_eqEquality, 
intEquality, 
computeAll, 
addEquality
Latex:
\mforall{}[X:Type].  \mforall{}[x:Point(free-dl(X))].    (fdl-is-1(x)  \mmember{}  \mBbbB{})
Date html generated:
2020_05_20-AM-08_42_42
Last ObjectModification:
2017_07_28-AM-09_13_37
Theory : lattices
Home
Index