Nuprl Lemma : list-decomp-no_repeats
∀[T:Type]. ∀[l1,l2,l3,l4:T List]. ∀[x:T].
((l1 = l3 ∈ (T List)) ∧ (l2 = l4 ∈ (T List))) supposing
((((l1 @ [x]) @ l2) = ((l3 @ [x]) @ l4) ∈ (T List)) and
no_repeats(T;(l1 @ [x]) @ l2))
Proof
Definitions occuring in Statement :
no_repeats: no_repeats(T;l)
,
append: as @ bs
,
cons: [a / b]
,
nil: []
,
list: T List
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
and: P ∧ Q
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
and: P ∧ Q
,
cand: A c∧ B
,
prop: ℙ
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
rev_implies: P
⇐ Q
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
squash: ↓T
,
top: Top
,
true: True
,
guard: {T}
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
decidable: Dec(P)
,
or: P ∨ Q
,
uiff: uiff(P;Q)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
ge: i ≥ j
,
sq_type: SQType(T)
,
select: L[n]
,
cons: [a / b]
,
less_than: a < b
,
no_repeats: no_repeats(T;l)
,
nat: ℕ
,
subtract: n - m
Lemmas referenced :
equal_wf,
list_wf,
append_wf,
cons_wf,
nil_wf,
no_repeats_wf,
list_extensionality_iff,
int_seg_subtype,
length_wf,
false_wf,
le_wf,
squash_wf,
true_wf,
add_functionality_wrt_eq,
length_append,
subtype_rel_list,
top_wf,
iff_weakening_equal,
length-singleton,
length-append,
length_of_cons_lemma,
length_of_nil_lemma,
int_seg_properties,
decidable__le,
add-is-int-iff,
satisfiable-full-omega-tt,
intformnot_wf,
intformle_wf,
itermAdd_wf,
itermVar_wf,
itermConstant_wf,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
int_seg_wf,
decidable__equal_int,
non_neg_length,
intformand_wf,
int_formula_prop_and_lemma,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
lelt_wf,
select_append_front,
select_append_back,
subtype_base_sq,
int_subtype_base,
intformeq_wf,
itermSubtract_wf,
int_formula_prop_eq_lemma,
int_term_value_subtract_lemma,
decidable__or,
less_than_wf,
intformor_wf,
int_formula_prop_or_lemma,
length_wf_nat,
nat_properties,
nat_wf,
le_weakening2,
select_wf,
not_wf,
add-member-int_seg1,
subtract_wf,
and_wf,
add-associates,
minus-add,
minus-one-mul,
add-swap,
add-mul-special,
add-commutes,
zero-add,
zero-mul,
add-zero
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
independent_pairFormation,
hypothesis,
sqequalRule,
sqequalHypSubstitution,
productElimination,
thin,
independent_pairEquality,
axiomEquality,
extract_by_obid,
isectElimination,
cumulativity,
hypothesisEquality,
isect_memberEquality,
because_Cache,
equalityTransitivity,
equalitySymmetry,
universeEquality,
independent_functionElimination,
lambdaFormation,
dependent_functionElimination,
applyEquality,
natural_numberEquality,
addEquality,
independent_isectElimination,
lambdaEquality,
imageElimination,
intEquality,
voidElimination,
voidEquality,
imageMemberEquality,
baseClosed,
applyLambdaEquality,
setElimination,
rename,
unionElimination,
pointwiseFunctionality,
promote_hyp,
baseApply,
closedConclusion,
dependent_pairFormation,
int_eqEquality,
computeAll,
dependent_set_memberEquality,
instantiate,
hyp_replacement,
multiplyEquality,
productEquality
Latex:
\mforall{}[T:Type]. \mforall{}[l1,l2,l3,l4:T List]. \mforall{}[x:T].
((l1 = l3) \mwedge{} (l2 = l4)) supposing
((((l1 @ [x]) @ l2) = ((l3 @ [x]) @ l4)) and
no\_repeats(T;(l1 @ [x]) @ l2))
Date html generated:
2017_10_01-AM-08_39_11
Last ObjectModification:
2017_07_26-PM-04_27_23
Theory : list!
Home
Index