Nuprl Lemma : not-nullset

[p:FinProbSpace]. ¬nullset(p;λs.True) supposing ¬¬Konig(||p||)


Proof




Definitions occuring in Statement :  Konig: Konig(k) nullset: nullset(p;S) finite-prob-space: FinProbSpace length: ||as|| uimplies: supposing a uall: [x:A]. B[x] not: ¬A true: True lambda: λx.A[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False prop: finite-prob-space: FinProbSpace nullset: nullset(p;S) all: x:A. B[x] subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q less_than: a < b squash: T less_than': less_than'(a;b) true: True int_nzero: -o nequal: a ≠ b ∈  sq_type: SQType(T) guard: {T} qdiv: (r/s) qmul: s callbyvalueall: callbyvalueall evalall: evalall(t) qinv: 1/r ifthenelse: if then else fi  btrue: tt bfalse: ff exists: x:A. B[x] cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] Konig: Konig(k) p-outcome: Outcome p-open: p-open(p) int_seg: {i..j-} nat: le: A ≤ B rev_uimplies: rev_uimplies(P;Q) ge: i ≥  decidable: Dec(P) or: P ∨ Q lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top bool: 𝔹 unit: Unit it: bnot: ¬bb assert: b p-measure-le: measure(C) ≤ q qless: r < s grp_lt: a < b set_lt: a <b set_blt: a <b b band: p ∧b q infix_ap: y set_le: b pi2: snd(t) oset_of_ocmon: g↓oset dset_of_mon: g↓set grp_le: b pi1: fst(t) qadd_grp: <ℚ+> q_le: q_le(r;s) bor: p ∨bq qpositive: qpositive(r) qsub: s qadd: s lt_int: i <j qeq: qeq(r;s) eq_int: (i =z j) random-variable: RandomVariable(p;n) p-open-member: s ∈ C
Lemmas referenced :  nullset_wf true_wf nat_wf p-outcome_wf not_wf Konig_wf length_wf_nat rationals_wf finite-prob-space_wf qinv-positive qless-int qdiv_wf int_nzero-rational subtype_base_sq int_subtype_base equal_wf nequal_wf qless_wf all_wf p-open-member_wf p-measure-le_wf equal-wf-base double-negation-hyp-elim eq_int_wf int_seg_wf assert_of_eq_int subtype_rel_function int_seg_subtype false_wf subtype_rel_self assert_wf le_wf nat_properties decidable__equal_int int_seg_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_formula_prop_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot less_than_wf intformless_wf int_formula_prop_less_lemma lelt_wf length_wf decidable__le natural_number_wf_p-outcome nequal-le-implies decidable__lt neg_assert_of_eq_int exists_wf expectation-constant int-subtype-rationals subtype_rel_set int-equal-in-rationals int_seg_subtype_nat equal-wf-T-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination extract_by_obid isectElimination hypothesisEquality lambdaEquality functionEquality sqequalRule dependent_functionElimination because_Cache setElimination rename isect_memberEquality equalityTransitivity equalitySymmetry natural_numberEquality applyEquality independent_isectElimination productElimination independent_pairFormation imageMemberEquality baseClosed dependent_set_memberEquality addLevel instantiate cumulativity intEquality dependent_pairFormation promote_hyp productEquality functionExtensionality dependent_pairEquality unionElimination applyLambdaEquality approximateComputation int_eqEquality voidEquality equalityElimination hyp_replacement allFunctionality levelHypothesis allLevelFunctionality existsFunctionality

Latex:
\mforall{}[p:FinProbSpace].  \mneg{}nullset(p;\mlambda{}s.True)  supposing  \mneg{}\mneg{}Konig(||p||)



Date html generated: 2018_05_22-AM-00_37_04
Last ObjectModification: 2018_05_16-PM-01_03_03

Theory : randomness


Home Index