Nuprl Lemma : positive-rat-cube-dimension
∀k:ℕ. ∀c:ℚCube(k).  (0 < dim(c) 
⇒ (∃i:ℕk. (dim(c i) = 1 ∈ ℤ)))
Proof
Definitions occuring in Statement : 
rat-cube-dimension: dim(c)
, 
rational-cube: ℚCube(k)
, 
rat-interval-dimension: dim(I)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rat-cube-dimension: dim(c)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
sum: Σ(f[x] | x < k)
, 
sum_aux: sum_aux(k;v;i;x.f[x])
, 
nat: ℕ
, 
le: A ≤ B
, 
not: ¬A
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
rational-cube: ℚCube(k)
, 
so_apply: x[s]
, 
nat_plus: ℕ+
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
lelt: i ≤ j < k
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
Lemmas referenced : 
inhabited-rat-cube_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
eqff_to_assert, 
assert_of_bnot, 
istype-less_than, 
rat-cube-dimension_wf, 
rational-cube_wf, 
istype-nat, 
istype-void, 
istype-le, 
sum_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
rat-interval-dimension_wf, 
int_seg_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
primrec-wf2, 
less_than_wf, 
equal-wf-base, 
squash_wf, 
true_wf, 
sum_split1, 
decidable__lt, 
subtype_rel_self, 
iff_weakening_equal, 
non_neg_sum, 
int_seg_properties, 
subtype_rel_function, 
rational-interval_wf, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2, 
decidable__equal_int, 
itermAdd_wf, 
int_term_value_add_lemma, 
int_seg_subtype_special, 
int_seg_cases
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
imageElimination, 
voidElimination, 
natural_numberEquality, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
universeIsType, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
functionIsType, 
productIsType, 
equalityIstype, 
intEquality, 
baseClosed, 
sqequalBase, 
setIsType, 
functionEquality, 
productEquality, 
imageMemberEquality, 
universeEquality, 
applyLambdaEquality, 
addEquality, 
minusEquality, 
multiplyEquality, 
hypothesis_subsumption
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\mBbbQ{}Cube(k).    (0  <  dim(c)  {}\mRightarrow{}  (\mexists{}i:\mBbbN{}k.  (dim(c  i)  =  1)))
Date html generated:
2020_05_20-AM-09_19_21
Last ObjectModification:
2019_11_13-PM-06_13_07
Theory : rationals
Home
Index