Nuprl Lemma : positive-rat-cube-dimension

k:ℕ. ∀c:ℚCube(k).  (0 < dim(c)  (∃i:ℕk. (dim(c i) 1 ∈ ℤ)))


Proof




Definitions occuring in Statement :  rat-cube-dimension: dim(c) rational-cube: Cube(k) rat-interval-dimension: dim(I) int_seg: {i..j-} nat: less_than: a < b all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rat-cube-dimension: dim(c) member: t ∈ T uall: [x:A]. B[x] or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  btrue: tt bfalse: ff less_than: a < b squash: T less_than': less_than'(a;b) false: False subtype_rel: A ⊆B int_seg: {i..j-} sum: Σ(f[x] x < k) sum_aux: sum_aux(k;v;i;x.f[x]) nat: le: A ≤ B not: ¬A decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: so_lambda: λ2x.t[x] rational-cube: Cube(k) so_apply: x[s] nat_plus: + true: True iff: ⇐⇒ Q lelt: i ≤ j < k cand: c∧ B rev_implies:  Q subtract: m
Lemmas referenced :  inhabited-rat-cube_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert eqff_to_assert assert_of_bnot istype-less_than rat-cube-dimension_wf rational-cube_wf istype-nat istype-void istype-le sum_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf rat-interval-dimension_wf int_seg_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma set_subtype_base lelt_wf int_subtype_base primrec-wf2 less_than_wf equal-wf-base squash_wf true_wf sum_split1 decidable__lt subtype_rel_self iff_weakening_equal non_neg_sum int_seg_properties subtype_rel_function rational-interval_wf int_seg_subtype istype-false not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 decidable__equal_int itermAdd_wf int_term_value_add_lemma int_seg_subtype_special int_seg_cases
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis dependent_functionElimination because_Cache unionElimination instantiate cumulativity independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination productElimination sqequalRule imageElimination voidElimination natural_numberEquality applyEquality lambdaEquality_alt setElimination rename inhabitedIsType universeIsType dependent_set_memberEquality_alt independent_pairFormation approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt functionIsType productIsType equalityIstype intEquality baseClosed sqequalBase setIsType functionEquality productEquality imageMemberEquality universeEquality applyLambdaEquality addEquality minusEquality multiplyEquality hypothesis_subsumption

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\mBbbQ{}Cube(k).    (0  <  dim(c)  {}\mRightarrow{}  (\mexists{}i:\mBbbN{}k.  (dim(c  i)  =  1)))



Date html generated: 2020_05_20-AM-09_19_21
Last ObjectModification: 2019_11_13-PM-06_13_07

Theory : rationals


Home Index