Nuprl Lemma : q-not-limit-zero-diverges-2

f:ℕ+ ⟶ ℚ
  (∃q:ℚ(0 < q ∧ (∀n:ℕ. ∃m:ℕ(n < m ∧ (q ≤ f[m])))))  (∀B:ℚ. ∃n:ℕ(B ≤ Σ1 ≤ i < n. f[i])) 
  supposing ∀n:ℕ+(0 ≤ f[n])


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qle: r ≤ s qless: r < s rationals: nat_plus: + nat: less_than: a < b uimplies: supposing a so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B so_apply: x[s] implies:  Q so_lambda: λ2x.t[x] nat: bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} nat_plus: + decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q top: Top true: True qle: r ≤ s grp_leq: a ≤ b infix_ap: y grp_le: b pi1: fst(t) pi2: snd(t) qadd_grp: <ℚ+> q_le: q_le(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) bor: p ∨bq qpositive: qpositive(r) qsub: s qadd: s qmul: s lt_int: i <j qeq: qeq(r;s) eq_int: (i =z j) nequal: a ≠ b ∈  subtract: m satisfiable_int_formula: satisfiable_int_formula(fmla) squash: T int_seg: {i..j-} lelt: i ≤ j < k sq_stable: SqStable(P) qsum: Σa ≤ j < b. E[j] rng_sum: rng_sum mon_itop: Π lb ≤ i < ub. E[i] add_grp_of_rng: r↓+gp grp_op: * grp_id: e qrng: <ℚ+*> rng_plus: +r rng_zero: 0 itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y
Lemmas referenced :  qle_witness int-subtype-rationals nat_plus_wf q-not-limit-zero-diverges eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf le_wf nat_properties nequal-le-implies zero-add decidable__lt not-lt-2 add_functionality_wrt_le add-commutes le-add-cancel less_than_wf nat_wf rationals_wf exists_wf qless_wf all_wf qle_wf less_than_transitivity2 not-equal-2 add-associates add-zero condition-implies-le minus-add minus-zero decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf intformeq_wf itermConstant_wf int_formula_prop_eq_lemma int_term_value_constant_lemma squash_wf true_wf qsum_wf int_seg_wf decidable__equal_int int_subtype_base sq_stable__le less-iff-le int_seg_properties less_than_transitivity1 less_than_irreflexivity sum_unroll_base_q iff_weakening_equal sum_unroll_lo_q mon_ident_q
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination natural_numberEquality hypothesis applyEquality functionExtensionality independent_functionElimination rename setElimination because_Cache unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp instantiate cumulativity voidElimination hypothesis_subsumption dependent_set_memberEquality independent_pairFormation isect_memberEquality voidEquality intEquality productEquality functionEquality addEquality minusEquality int_eqEquality computeAll hyp_replacement imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbQ{}
    (\mexists{}q:\mBbbQ{}.  (0  <  q  \mwedge{}  (\mforall{}n:\mBbbN{}.  \mexists{}m:\mBbbN{}.  (n  <  m  \mwedge{}  (q  \mleq{}  f[m])))))  {}\mRightarrow{}  (\mforall{}B:\mBbbQ{}.  \mexists{}n:\mBbbN{}.  (B  \mleq{}  \mSigma{}1  \mleq{}  i  <  n.  f[i])) 
    supposing  \mforall{}n:\mBbbN{}\msupplus{}.  (0  \mleq{}  f[n])



Date html generated: 2018_05_22-AM-00_16_43
Last ObjectModification: 2017_07_26-PM-06_52_59

Theory : rationals


Home Index