Nuprl Lemma : callbyvalueall-seq_wf

[T:Type]. ∀[m:ℕ]. ∀[n:ℕ1]. ∀[A:ℕm ⟶ ValueAllType]. ∀[L:i:ℕm ⟶ funtype(i;A;A i)]. ∀[G:∀[T:Type]
                                                                                              (funtype(n;A;T) ⟶ T)].
[F:funtype(m;A;T)].
  (callbyvalueall-seq(L;G;F;n;m) ∈ T)


Proof




Definitions occuring in Statement :  callbyvalueall-seq: callbyvalueall-seq(L;G;F;n;m) funtype: funtype(n;A;T) int_seg: {i..j-} nat: vatype: ValueAllType uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  vatype: ValueAllType uall: [x:A]. B[x] member: t ∈ T nat: int_seg: {i..j-} exists: x:A. B[x] lelt: i ≤ j < k and: P ∧ Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top prop: subtype_rel: A ⊆B sq_type: SQType(T) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] callbyvalueall-seq: callbyvalueall-seq(L;G;F;n;m) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b le: A ≤ B less_than': less_than'(a;b) sq_stable: SqStable(P) squash: T callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  int_seg_properties subtract_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_formula_prop_wf le_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma equal-wf-base-T int_subtype_base subtype_base_sq ge_wf less_than_wf uall_wf funtype_wf less_than_transitivity1 less_than_irreflexivity lelt_wf le_int_wf bool_wf eqtt_to_assert assert_of_le_int int_seg_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot subtype_rel_dep_function valueall-type_wf int_seg_subtype false_wf subtype_rel-equal decidable__lt valueall-type-has-valueall sq_stable__valueall-type evalall-reduce int_seg_subtype_nat nat_wf member_wf squash_wf true_wf funtype-unroll-last-eq iff_weakening_equal add-subtract-cancel eq_int_wf assert_wf bnot_wf not_wf equal-wf-T-base bool_cases assert_of_eq_int iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality addEquality setElimination rename because_Cache hypothesis hypothesisEquality dependent_pairFormation productElimination dependent_set_memberEquality dependent_functionElimination unionElimination independent_isectElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll applyEquality promote_hyp instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination intWeakElimination lambdaFormation axiomEquality universeEquality functionEquality equalityElimination isectEquality functionExtensionality setEquality imageMemberEquality baseClosed imageElimination callbyvalueReduce impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m  +  1].  \mforall{}[A:\mBbbN{}m  {}\mrightarrow{}  ValueAllType].  \mforall{}[L:i:\mBbbN{}m  {}\mrightarrow{}  funtype(i;A;A  i)].
\mforall{}[G:\mforall{}[T:Type].  (funtype(n;A;T)  {}\mrightarrow{}  T)].  \mforall{}[F:funtype(m;A;T)].
    (callbyvalueall-seq(L;G;F;n;m)  \mmember{}  T)



Date html generated: 2017_10_01-AM-08_39_50
Last ObjectModification: 2017_07_26-PM-04_27_45

Theory : untyped!computation


Home Index