Nuprl Lemma : es-local-le-pred-property

[Info:Type]
  ∀P:es:EO+(Info) ─→ E ─→ 𝔹. ∀es:EO+(Info). ∀e:E.
    ((↑e ∈b ≤(P) ⇐⇒ ∃a:E. (a ≤loc e  ∧ (↑(P es a))))
    ∧ ≤(P)(e) ≤loc e  ∧ (↑(P es ≤(P)(e))) ∧ (∀e'':E. (e'' ≤loc e   (≤(P)(e) <loc e'')  (¬↑(P es e'')))) 
      supposing ↑e ∈b ≤(P))


Proof




Definitions occuring in Statement :  es-local-le-pred: (P) eclass-val: X(e) in-eclass: e ∈b X event-ordering+: EO+(Info) es-le: e ≤loc e'  es-locl: (e <loc e') es-E: E assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type
Lemmas :  es-causl-swellfnd less_than_transitivity1 less_than_irreflexivity int_seg_wf decidable__equal_int subtype_rel-int_seg false_wf le_weakening subtract_wf int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf bool_wf eqtt_to_assert bag_size_single_lemma bag_only_single_lemma es-le_weakening_eq es-le_wf assert_wf true_wf exists_wf es-le-self es-locl_transitivity2 es-locl_irreflexivity es-locl_wf uiff_transitivity equal-wf-T-base bnot_wf not_wf eqff_to_assert assert_of_bnot equal_wf all_wf int_seg_subtype-nat iff_wf in-eclass_wf es-local-le-pred_wf es-interface-subtype_rel2 es-E_wf event-ordering+_subtype top_wf subtype_top eclass-val_wf decidable__lt not-equal-2 condition-implies-le minus-add minus-minus minus-one-mul add-swap add-commutes add-associates add_functionality_wrt_le zero-add le-add-cancel-alt less-iff-le le-add-cancel set_wf less_than_wf primrec-wf2 decidable__le not-le-2 sq_stable__le add-zero add-mul-special zero-mul event-ordering+_wf es-first_wf2 bag_size_empty_lemma es-locl-first assert_elim btrue_neq_bfalse and_wf subtype_base_sq bool_subtype_base es-pred_wf es-pred-locl es-causl_weakening es-locl_transitivity1 es-le_weakening es-le-pred not_assert_elim assert_witness es-le-iff

Latex:
\mforall{}[Info:Type]
    \mforall{}P:es:EO+(Info)  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbB{}.  \mforall{}es:EO+(Info).  \mforall{}e:E.
        ((\muparrow{}e  \mmember{}\msubb{}  \mleq{}(P)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:E.  (a  \mleq{}loc  e    \mwedge{}  (\muparrow{}(P  es  a))))
        \mwedge{}  \mleq{}(P)(e)  \mleq{}loc  e 
            \mwedge{}  (\muparrow{}(P  es  \mleq{}(P)(e)))
            \mwedge{}  (\mforall{}e'':E.  (e''  \mleq{}loc  e    {}\mRightarrow{}  (\mleq{}(P)(e)  <loc  e'')  {}\mRightarrow{}  (\mneg{}\muparrow{}(P  es  e'')))) 
            supposing  \muparrow{}e  \mmember{}\msubb{}  \mleq{}(P))



Date html generated: 2015_07_20-PM-04_08_11
Last ObjectModification: 2015_01_27-PM-10_01_05

Home Index