Nuprl Lemma : list-eo-before
∀L:Top List. ∀i:Id. ∀e:E. (before(e) ~ upto(e))
Proof
Definitions occuring in Statement :
list-eo: list-eo(L;i)
,
es-before: before(e)
,
es-E: E
,
Id: Id
,
upto: upto(n)
,
list: T List
,
top: Top
,
all: ∀x:A. B[x]
,
sqequal: s ~ t
Lemmas :
list-eo-E-sq,
subtype_base_sq,
list_wf,
int_seg_wf,
list_subtype_base,
set_subtype_base,
lelt_wf,
int_subtype_base,
assert_of_lt_int,
nat_properties,
less_than_transitivity1,
less_than_irreflexivity,
ge_wf,
less_than_wf,
length_wf,
top_wf,
list-eo-first,
false_wf,
nil_wf,
decidable__le,
subtract_wf,
not-ge-2,
less-iff-le,
condition-implies-le,
minus-one-mul,
zero-add,
minus-add,
minus-minus,
add-associates,
add-swap,
add-commutes,
add_functionality_wrt_le,
add-zero,
le-add-cancel,
le_weakening2,
set_wf,
nat_wf,
assert_wf,
lt_int_wf,
Id_wf,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
le_weakening,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
append_wf,
squash_wf,
true_wf,
decidable__lt,
not-equal-2,
le-add-cancel2,
subtype_rel_list,
subtype_rel-int_seg,
not-le-2,
add-mul-special,
zero-mul,
cons_wf,
subtract-is-less,
upto_wf,
iff_weakening_equal,
upto_decomp1,
list-eo-pred
Latex:
\mforall{}L:Top List. \mforall{}i:Id. \mforall{}e:E. (before(e) \msim{} upto(e))
Date html generated:
2015_07_21-PM-04_31_15
Last ObjectModification:
2015_02_04-PM-06_00_30
Home
Index