Nuprl Lemma : ip-strict-between-iff

rv:InnerProductSpace. ∀a,b,c:Point.  (a-b-c ⇐⇒ (∃t:ℝ((t ∈ (r0, r1)) ∧ b ≡ t*a r1 t*c)) ∧ c)


Proof




Definitions occuring in Statement :  ip-strict-between: a-b-c inner-product-space: InnerProductSpace rv-mul: a*x rv-add: y rooint: (l, u) i-member: r ∈ I rsub: y int-to-real: r(n) real: ss-eq: x ≡ y ss-sep: y ss-point: Point all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q ip-strict-between: a-b-c uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B prop: rev_implies:  Q so_lambda: λ2x.t[x] guard: {T} so_apply: x[s] exists: x:A. B[x] cand: c∧ B uiff: uiff(P;Q) rsub: y top: Top rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  ip-dist-between ip-between-iff ss-sep-symmetry ip-strict-between_wf exists_wf real_wf i-member_wf rooint_wf int-to-real_wf ss-eq_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf rv-add_wf rv-mul_wf rsub_wf ss-sep_wf ss-point_wf ip-between-sep rv-norm-positive rv-sub_wf rv-sep-iff ip-dist-between-1 rv-norm_wf req_wf rv-ip_wf rleq_wf rmul_wf rabs_wf req_functionality rv-norm_functionality rv-sub_functionality ss-eq_weakening ss-eq_inversion req_weakening rmul_preserves_rless radd_wf rminus_wf rless_functionality rmul-zero-both rmul_comm member_rooint_lemma radd-preserves-rleq rleq_weakening_rless radd-preserves-rless rless_wf rabs-of-nonneg uiff_transitivity rleq_functionality radd_comm radd-ac radd_functionality radd-rminus-both radd-zero-both rv-norm-positive-iff req_inversion ip-dist-between-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesisEquality independent_isectElimination hypothesis dependent_functionElimination independent_functionElimination applyEquality because_Cache sqequalRule productEquality lambdaEquality natural_numberEquality instantiate setElimination rename setEquality promote_hyp isect_memberEquality voidElimination voidEquality addLevel levelHypothesis

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.
    (a-b-c  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}t:\mBbbR{}.  ((t  \mmember{}  (r0,  r1))  \mwedge{}  b  \mequiv{}  t*a  +  r1  -  t*c))  \mwedge{}  a  \#  c)



Date html generated: 2017_10_05-AM-00_03_40
Last ObjectModification: 2017_03_12-PM-03_15_52

Theory : inner!product!spaces


Home Index