Nuprl Lemma : ip-strict-between-iff
∀rv:InnerProductSpace. ∀a,b,c:Point.  (a-b-c 
⇐⇒ (∃t:ℝ. ((t ∈ (r0, r1)) ∧ b ≡ t*a + r1 - t*c)) ∧ a # c)
Proof
Definitions occuring in Statement : 
ip-strict-between: a-b-c
, 
inner-product-space: InnerProductSpace
, 
rv-mul: a*x
, 
rv-add: x + y
, 
rooint: (l, u)
, 
i-member: r ∈ I
, 
rsub: x - y
, 
int-to-real: r(n)
, 
real: ℝ
, 
ss-eq: x ≡ y
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
ip-strict-between: a-b-c
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
rsub: x - y
, 
top: Top
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
ip-dist-between, 
ip-between-iff, 
ss-sep-symmetry, 
ip-strict-between_wf, 
exists_wf, 
real_wf, 
i-member_wf, 
rooint_wf, 
int-to-real_wf, 
ss-eq_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
rv-add_wf, 
rv-mul_wf, 
rsub_wf, 
ss-sep_wf, 
ss-point_wf, 
ip-between-sep, 
rv-norm-positive, 
rv-sub_wf, 
rv-sep-iff, 
ip-dist-between-1, 
rv-norm_wf, 
req_wf, 
rv-ip_wf, 
rleq_wf, 
rmul_wf, 
rabs_wf, 
req_functionality, 
rv-norm_functionality, 
rv-sub_functionality, 
ss-eq_weakening, 
ss-eq_inversion, 
req_weakening, 
rmul_preserves_rless, 
radd_wf, 
rminus_wf, 
rless_functionality, 
rmul-zero-both, 
rmul_comm, 
member_rooint_lemma, 
radd-preserves-rleq, 
rleq_weakening_rless, 
radd-preserves-rless, 
rless_wf, 
rabs-of-nonneg, 
uiff_transitivity, 
rleq_functionality, 
radd_comm, 
radd-ac, 
radd_functionality, 
radd-rminus-both, 
radd-zero-both, 
rv-norm-positive-iff, 
req_inversion, 
ip-dist-between-2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
productEquality, 
lambdaEquality, 
natural_numberEquality, 
instantiate, 
setElimination, 
rename, 
setEquality, 
promote_hyp, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
addLevel, 
levelHypothesis
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.
    (a-b-c  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}t:\mBbbR{}.  ((t  \mmember{}  (r0,  r1))  \mwedge{}  b  \mequiv{}  t*a  +  r1  -  t*c))  \mwedge{}  a  \#  c)
Date html generated:
2017_10_05-AM-00_03_40
Last ObjectModification:
2017_03_12-PM-03_15_52
Theory : inner!product!spaces
Home
Index