Nuprl Lemma : ip-triangle-lemma

rv:InnerProductSpace. ∀x,y:Point.
  ((||x|| ||y||)  (r0 < ||x y||)  (r0 < ||r(-1)*x y||)  (|x ⋅ y| < (||x|| ||y||)))


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-sub: y rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-mul: a*x rless: x < y rabs: |x| req: y rmul: b int-to-real: r(n) ss-point: Point all: x:A. B[x] implies:  Q minus: -n natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B and: P ∧ Q prop: uimplies: supposing a guard: {T} nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A iff: ⇐⇒ Q rev_implies:  Q itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) less_than: a < b squash: T or: P ∨ Q cand: c∧ B nat_plus: + true: True
Lemmas referenced :  square-rless-implies rabs_wf rv-ip_wf rmul_wf rv-norm_wf real_wf rleq_wf int-to-real_wf req_wf rmul-nonneg-case1 rv-norm-nonneg rless_wf rv-sub_wf inner-product-space_subtype rv-mul_wf ss-point_wf real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf rnexp_wf false_wf le_wf rnexp2-nonneg rnexp-positive radd_wf rsub_wf rless_functionality req_inversion rabs-rnexp rnexp-rmul rabs-of-nonneg rmul_functionality rv-norm-squared rnexp2 req_weakening req_transitivity rv-ip-sub-squared radd_functionality rsub_functionality rv-ip-mul rv-ip-mul2 rmul-assoc rmul-int real_term_polynomial itermSubtract_wf itermAdd_wf itermMultiply_wf itermConstant_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 req_functionality rnexp_functionality radd-preserves-req rmul-is-positive rless-int less_than_wf or_wf radd-preserves-rless rminus_wf rabs-rless-iff itermMinus_wf real_term_value_minus_lemma rnexp-rless zero-rleq-rabs
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality productEquality natural_numberEquality sqequalRule independent_functionElimination because_Cache independent_isectElimination independent_pairFormation minusEquality instantiate dependent_set_memberEquality productElimination multiplyEquality promote_hyp computeAll int_eqEquality intEquality isect_memberEquality voidElimination voidEquality addLevel orFunctionality andLevelFunctionality imageElimination unionElimination imageMemberEquality baseClosed

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}x,y:Point.
    ((||x||  =  ||y||)  {}\mRightarrow{}  (r0  <  ||x  -  y||)  {}\mRightarrow{}  (r0  <  ||r(-1)*x  -  y||)  {}\mRightarrow{}  (|x  \mcdot{}  y|  <  (||x||  *  ||y||)))



Date html generated: 2017_10_04-PM-11_59_17
Last ObjectModification: 2017_07_28-AM-08_54_41

Theory : inner!product!spaces


Home Index